- #1
rczmiller
- 20
- 0
I am not sure if this is the right place to ask this question. I am an amateur but I enjoy reading and trying to understand relativity. If anyone is aware of an article that addresses this question, I would appreciate the reference so that I can read up on it. Unfortunately, there are a lot of websites out there that claims to have the answer, but some of the info seems unfounded. If someone can recommend a better site that I can ask questions to try to clarify my thoughts/readings/understands, I would also welcome the info. I don’t want to waste the experts’ time dealing with my simple questions.
Anyway – it is my understanding that relativity and the twin paradox addresses time passage for 2 objects when one object speeds away from the other then returns. The object that accelerates away will experience time passage “slower” then the other “stationary” object. Since space/time is relative, it does not matter what direction the moving object speeds off. Time relative to the stationary object will slow down.
I have been playing with a thought experiment using 3 objects and I am not sure of the results. From Earth (object #1) a spacecraft (object #2) speeds away at near light speeds. Due to relativity, time would slow down for the spacecraft so that the speed of light would remain constant. What if at some point early in this trip, the spacecraft launched a probe (object #3) which accelerates back towards Earth at the same speed the spacecraft was traveling away from the Earth. The spacecraft would see the object speed away from it at near light speed, but the Earth would view the probe as slowing down to a standstill relative to the Earth. Does time slow down for the probe as it relates to the spacecraft , or will the probe’s time begin to keep step with the Earth clocks?
To finish up this thought experiment, say that the spacecraft travels around the nearest star and returns back to Earth. However, before the spacecraft returns home, the probe accelerates again towards Earth so that the spacecraft can capture the probe. When the spacecraft and probe return to Earth, what would the clocks read? It is my understanding that since the probe accelerated away for the relative clock on the spacecraft , the probe’s clock would be slower than the spacecraft ’s clock and the spacecraft ’s clock would be slower than the Earth’s clock.
Here’s my first problem, what if a second spacecraft was launched from Earth at a speed well below light and retrieved the probe and returned it back to Earth long before the original spacecraft returned to Earth. It seems to me that at some point, the probe’s clock should begin to keep time with the Earth. So if the probe accelerated away from the first spacecraft so that it “hung” over the Earth, why would the time passage for the probe speed up to match Earth’s clock if it was accelerated at near light speed after it’s original burst to move away from the first spacecraft ?
These thoughts lead me to the subject of my title. If the universe started with a “Big Bang” and the galaxies are all moving away from each other (for the most part), what if the origin point of the universe was object #1 and the Earth was considered object #2 and we launched a spacecraft (object #3) back toward the universe’s origin point. If the spacecraft ever returned to this point, what would the clocks read for the spacecraft relative to the starting point and relative to the Earth?
Can anyone recommend a presentation for a layman on the above? I am sure I am not the first to ask this question, so if there is a paper out there on this subject, I would love to read it.
Now off to more reading...thank you to all!
Anyway – it is my understanding that relativity and the twin paradox addresses time passage for 2 objects when one object speeds away from the other then returns. The object that accelerates away will experience time passage “slower” then the other “stationary” object. Since space/time is relative, it does not matter what direction the moving object speeds off. Time relative to the stationary object will slow down.
I have been playing with a thought experiment using 3 objects and I am not sure of the results. From Earth (object #1) a spacecraft (object #2) speeds away at near light speeds. Due to relativity, time would slow down for the spacecraft so that the speed of light would remain constant. What if at some point early in this trip, the spacecraft launched a probe (object #3) which accelerates back towards Earth at the same speed the spacecraft was traveling away from the Earth. The spacecraft would see the object speed away from it at near light speed, but the Earth would view the probe as slowing down to a standstill relative to the Earth. Does time slow down for the probe as it relates to the spacecraft , or will the probe’s time begin to keep step with the Earth clocks?
To finish up this thought experiment, say that the spacecraft travels around the nearest star and returns back to Earth. However, before the spacecraft returns home, the probe accelerates again towards Earth so that the spacecraft can capture the probe. When the spacecraft and probe return to Earth, what would the clocks read? It is my understanding that since the probe accelerated away for the relative clock on the spacecraft , the probe’s clock would be slower than the spacecraft ’s clock and the spacecraft ’s clock would be slower than the Earth’s clock.
Here’s my first problem, what if a second spacecraft was launched from Earth at a speed well below light and retrieved the probe and returned it back to Earth long before the original spacecraft returned to Earth. It seems to me that at some point, the probe’s clock should begin to keep time with the Earth. So if the probe accelerated away from the first spacecraft so that it “hung” over the Earth, why would the time passage for the probe speed up to match Earth’s clock if it was accelerated at near light speed after it’s original burst to move away from the first spacecraft ?
These thoughts lead me to the subject of my title. If the universe started with a “Big Bang” and the galaxies are all moving away from each other (for the most part), what if the origin point of the universe was object #1 and the Earth was considered object #2 and we launched a spacecraft (object #3) back toward the universe’s origin point. If the spacecraft ever returned to this point, what would the clocks read for the spacecraft relative to the starting point and relative to the Earth?
Can anyone recommend a presentation for a layman on the above? I am sure I am not the first to ask this question, so if there is a paper out there on this subject, I would love to read it.
Now off to more reading...thank you to all!