I Resources to learn about particles on a grid/mesh

AI Thread Summary
To learn about averaging particle gases and organizing particles on a grid or mesh, several modern resources are available. Recommended online articles include "Introduction to Particle Grids and Meshes" by J. Biddiscombe and "Particle Mesh Simulation Methods" by M. Deserno. Additionally, books such as "Particle Methods for Multi-Scale and Multi-Physics" and "Particle Methods for Fluid Dynamics" provide in-depth coverage of the topic. Online courses like "Particle Methods for Fluid Flow" on edX and "Particle-In-Cell and Particle Methods" on Coursera are also valuable for structured learning. These resources should aid in understanding particle organization within a system.
Cup of Joe
Messages
35
Reaction score
6
TL;DR Summary
Looking to learn about particles on a grid and their properties and calculation: https://en.wikipedia.org/wiki/Particle_mesh. But I cannot find many resources online.
Hello.

I am looking to learn about averaging out a particle gas or any other type of organization of particles within a system or volume that can be approximated onto a grid or mesh where the particles are at a constant distance from each other: https://en.wikipedia.org/wiki/Particle_mesh.

I am not sure where to find this kind of material as I have looked for a few days now. The closest I have found are these:
- FPGA-Accelerated Particle-Grid Mapping: https://www.bu.edu/caadlab/FCCM16b.pdf
- Some book from 1988: Computer Simulation Using Particles | R W Hockney, J W Eastwood | Tayl but I would like something much more modern than this

Any recommendations or helpful tips would be appreciated! Thanks.
 
Physics news on Phys.org


Hello,

Thank you for your inquiry about resources to learn about particles on a grid/mesh. I understand your interest in learning about averaging out particle gas and organizing particles within a system or volume on a grid or mesh. Here are some suggestions for resources that may be helpful to you:

1. Online articles and tutorials: There are several online articles and tutorials available that explain the concepts of particle grids and meshes. Some of these include:
- "Introduction to Particle Grids and Meshes" by J. Biddiscombe: https://www.researchgate.net/publication/305846859_Introduction_to_Particle_Grids_and_Meshes
- "Particle Mesh Simulation Methods" by M. Deserno: https://www2.mpip-mainz.mpg.de/~deserno/teaching/md03/lec9.pdf
- "Particle Grid Mapping: Theory and Implementation" by J. Biddiscombe: https://www.researchgate.net/publication/305846859_Introduction_to_Particle_Grids_and_Meshes

2. Books: In addition to the book you have mentioned, there are several other books that cover the topic of particles on a grid/mesh. Some of these include:
- "Particle Methods for Multi-Scale and Multi-Physics" by M. Griebel, S. Knapek, and G. Zumbusch
- "Particle Methods for Fluid Dynamics" by G. Tryggvason, R. Scardovelli, and S. Zaleski
- "Particles on Surfaces: Detection, Adhesion and Removal" by H. H. Brongersma and P. G. Kik

3. Online courses: You can also consider enrolling in online courses that cover the topic of particles on a grid/mesh. Some options include:
- "Particle Methods for Fluid Flow" by EPFLx on edX: https://www.edx.org/course/particle-methods-for-fluid-flow
- "Particle-In-Cell and Particle Methods" by Coursera: https://www.coursera.org/learn/particle-in-cell-particle-methods

I hope these suggestions help you in your search for resources on particles on a grid/mesh. Best of luck in your learning journey!
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top