- #1
Jufa
- 101
- 15
I am dealing with restricted Boltzmann machines to model distributuins in my final degree project and some question has come to my mind.
A restricted Boltzmann machine with v visible binary neurons and h hidden neurons models a distribution in the following manner:
## f_i= e^{ \sum_k b[k] \sigma^i[k] + \sum_s \log(c[ s ] + e^{\sum_k w[ s ][ k ] b[ k ] })} ##
## Z = \sum_i f_i ##
## p_i = f_i/Z ##
Where b[ k ] and c[ s ] are, respectively, the k-th and the s-th bias of, again respectively, the visible and hidden layer.
w[ s ][k] is the component s, k of the weight matrix of the network.
"i" here refers to a certain binary vector with components ##\sigma^i[k]##.
My question is:
Given a certain restricted Boltzmann machine (i.e. a certain set of biases and weights) that models a certain distribution ##p_i##, is it possible to find another configuration (i.e. a different set of parameters and weights) such that it gives the same distribution?
Thanks in advance.
A restricted Boltzmann machine with v visible binary neurons and h hidden neurons models a distribution in the following manner:
## f_i= e^{ \sum_k b[k] \sigma^i[k] + \sum_s \log(c[ s ] + e^{\sum_k w[ s ][ k ] b[ k ] })} ##
## Z = \sum_i f_i ##
## p_i = f_i/Z ##
Where b[ k ] and c[ s ] are, respectively, the k-th and the s-th bias of, again respectively, the visible and hidden layer.
w[ s ][k] is the component s, k of the weight matrix of the network.
"i" here refers to a certain binary vector with components ##\sigma^i[k]##.
My question is:
Given a certain restricted Boltzmann machine (i.e. a certain set of biases and weights) that models a certain distribution ##p_i##, is it possible to find another configuration (i.e. a different set of parameters and weights) such that it gives the same distribution?
Thanks in advance.
Last edited by a moderator: