- #1
dumdum000333
- 9
- 0
[SOLVED] Resultant Force for circular motion on a banked track
A car travels 77 m/s around a circular track of radius 71.9
mass of car= 2800 kg
coefficient of friction = .1
angle of track with horizontal = 22 degrees
acceleration of gravity = 9.8 m/s^2
What is the magnitue pf the resultant force on the 2800 kg driver and his car?
normal force= mgcos(angle)
force of friction = (normal force)(coefficient of friction)
i know that the force of friction and normal force do not create the centripetal force necessary to cause uniform circular motion as
Fn= 2800(9.8)cos(22)=25441.9N
Ff= 25441.9(.1)=2544.19N
and the necessary centripetal force= mv^2/r= 2800(77)^2/71.9= 230892.9068N
so i tried making the resultant= the horizontal component of Ff+horizontal component of Fn= cos(22)(2544.19)+sin(22)(25441.9)= 11889.6N which was not the right answer
Homework Statement
A car travels 77 m/s around a circular track of radius 71.9
mass of car= 2800 kg
coefficient of friction = .1
angle of track with horizontal = 22 degrees
acceleration of gravity = 9.8 m/s^2
What is the magnitue pf the resultant force on the 2800 kg driver and his car?
Homework Equations
normal force= mgcos(angle)
force of friction = (normal force)(coefficient of friction)
The Attempt at a Solution
i know that the force of friction and normal force do not create the centripetal force necessary to cause uniform circular motion as
Fn= 2800(9.8)cos(22)=25441.9N
Ff= 25441.9(.1)=2544.19N
and the necessary centripetal force= mv^2/r= 2800(77)^2/71.9= 230892.9068N
so i tried making the resultant= the horizontal component of Ff+horizontal component of Fn= cos(22)(2544.19)+sin(22)(25441.9)= 11889.6N which was not the right answer
Last edited: