- #1
ognik
- 643
- 2
Hi
An exercise asks to show $ \int_{a}^{b}f(z) \,dz = -\int_{b}^{a}f(z) \,dz $
I can remember this for real functions, something like $ G(x) = \int_{a}^{b}f(x) \,dx = G(b) - G(a), \therefore \int_{b}^{a}f(x) \,dx = G(a) - G(b) = -\int_{a}^{b}f(x) \,dx $
I have seen 2 approaches, either parametizing w.r.t t or expanding z=u+iv, what I don't understand is why I need to paramatise/expand f(z)? Both of those approaches also have complex intergrands, so why does the paramatise/expand step make a difference?
An exercise asks to show $ \int_{a}^{b}f(z) \,dz = -\int_{b}^{a}f(z) \,dz $
I can remember this for real functions, something like $ G(x) = \int_{a}^{b}f(x) \,dx = G(b) - G(a), \therefore \int_{b}^{a}f(x) \,dx = G(a) - G(b) = -\int_{a}^{b}f(x) \,dx $
I have seen 2 approaches, either parametizing w.r.t t or expanding z=u+iv, what I don't understand is why I need to paramatise/expand f(z)? Both of those approaches also have complex intergrands, so why does the paramatise/expand step make a difference?