- #1
SweatingBear
- 119
- 0
For a triangle with sides \(\displaystyle a\), \(\displaystyle b\), \(\displaystyle c\) and angle \(\displaystyle C\), where the angle \(\displaystyle C\) subtends the side \(\displaystyle c\), show that
\(\displaystyle c \geqslant (a+b) \sin \left( \frac C2 \right)\)
_______
Let us stipulate \(\displaystyle 0^\circ < C < 180^\circ\) and of course \(\displaystyle a,b,c > 0\). Consequently, \(\displaystyle 0^\circ < \frac C2 \leqslant 90^\circ \implies 0 < \sin^2 \left( \frac C2 \right) \leqslant 1\) (we include \(\displaystyle 90^\circ\) for the angle \(\displaystyle \frac C2\) in order to account for right triangles).
Law of cosines yield
\(\displaystyle c^2 = a^2 + b^2 - 2ab \cos ( C )\)
Using \(\displaystyle \cos (C) \equiv 1 - 2\sin^2 \left( \frac C2 \right)\), we can write
\(\displaystyle c^2 = a^2 + b^2 - 2ab + 4ab\sin^2 \left( \frac C2 \right)\)
Now since \(\displaystyle 0 < \sin^2 \left( \frac C2 \right) \leqslant 1\), \(\displaystyle a^2 + b^2 - 2ab + 4ab\sin^2 \left( \frac C2 \right)\) will either have to equal \(\displaystyle a^2 + b^2 - 2ab + 4ab\) or be greater than it. Thus
\(\displaystyle c^2 \geqslant a^2 + b^2 - 2ab + 4ab = a^2 + 2ab + b^2 = (a+b)^2 \)
A similar argument can be made for \(\displaystyle (a+b)^2\) versus \(\displaystyle (a+b)^2 \sin^2 \left( \frac C2 \right)\): \(\displaystyle (a+b)^2\) will either have to equal or be greater than the latter expression, due to the values \(\displaystyle \sin^2 \left( \frac C2 \right)\) can assume. Therefore
\(\displaystyle c^2 \geqslant (a+b)^2 \geqslant (a+b)^2 \sin^2 \left( \frac C2 \right) \)
We can finally conclude
\(\displaystyle c \geqslant (a+b) \sin \left( \frac C2 \right)\)
Thoughts?
\(\displaystyle c \geqslant (a+b) \sin \left( \frac C2 \right)\)
_______
Let us stipulate \(\displaystyle 0^\circ < C < 180^\circ\) and of course \(\displaystyle a,b,c > 0\). Consequently, \(\displaystyle 0^\circ < \frac C2 \leqslant 90^\circ \implies 0 < \sin^2 \left( \frac C2 \right) \leqslant 1\) (we include \(\displaystyle 90^\circ\) for the angle \(\displaystyle \frac C2\) in order to account for right triangles).
Law of cosines yield
\(\displaystyle c^2 = a^2 + b^2 - 2ab \cos ( C )\)
Using \(\displaystyle \cos (C) \equiv 1 - 2\sin^2 \left( \frac C2 \right)\), we can write
\(\displaystyle c^2 = a^2 + b^2 - 2ab + 4ab\sin^2 \left( \frac C2 \right)\)
Now since \(\displaystyle 0 < \sin^2 \left( \frac C2 \right) \leqslant 1\), \(\displaystyle a^2 + b^2 - 2ab + 4ab\sin^2 \left( \frac C2 \right)\) will either have to equal \(\displaystyle a^2 + b^2 - 2ab + 4ab\) or be greater than it. Thus
\(\displaystyle c^2 \geqslant a^2 + b^2 - 2ab + 4ab = a^2 + 2ab + b^2 = (a+b)^2 \)
A similar argument can be made for \(\displaystyle (a+b)^2\) versus \(\displaystyle (a+b)^2 \sin^2 \left( \frac C2 \right)\): \(\displaystyle (a+b)^2\) will either have to equal or be greater than the latter expression, due to the values \(\displaystyle \sin^2 \left( \frac C2 \right)\) can assume. Therefore
\(\displaystyle c^2 \geqslant (a+b)^2 \geqslant (a+b)^2 \sin^2 \left( \frac C2 \right) \)
We can finally conclude
\(\displaystyle c \geqslant (a+b) \sin \left( \frac C2 \right)\)
Thoughts?