- #1
Jason4
- 28
- 0
I'm trying to review basic probability; haven't looked at it in a couple of years. Am I on the right track here?
A and B are independent random variables, uniform distribution on $[0,1]$. What is $E(min(A,B))$ ?
$\displaystyle\int_{0}^{1}\int_{0}^{a}b\,db\,da + \displaystyle\int_{0}^{1} \int_{a}^{1}a\,db\,da$
$=\displaystyle\int_{0}^{1}\frac{a^2}{2}\,da+\int_{0}^{1}a-a^2\,da$
$=1/6+3/6-2/6=1/3$
A and B are independent random variables, uniform distribution on $[0,1]$. What is $E(min(A,B))$ ?
$\displaystyle\int_{0}^{1}\int_{0}^{a}b\,db\,da + \displaystyle\int_{0}^{1} \int_{a}^{1}a\,db\,da$
$=\displaystyle\int_{0}^{1}\frac{a^2}{2}\,da+\int_{0}^{1}a-a^2\,da$
$=1/6+3/6-2/6=1/3$