MHB Rewrite in exponential form: Log(6) 1294 = 4

  • Thread starter Thread starter Vi Nguyen
  • Start date Start date
  • Tags Tags
    Exponential Form
AI Thread Summary
The discussion focuses on rewriting logarithmic equations in exponential form. The equation Log(6) 1294 = 4 is confirmed, with a suggestion that it might be Log(6) 1296 instead. The relationship between logarithms and exponents is emphasized, specifically that log_b(a) = c implies b^c = a. Additionally, participants evaluate Log(4) 64, noting that 4^3 equals 64, and Log(16) 4, recognizing that 16 raised to the power of 1/2 equals 4. The conversation highlights the fundamental properties of logarithms and their exponential counterparts.
Vi Nguyen
Messages
13
Reaction score
0
Rewrite in exponential form:
Log(6) 1294 = 4
Log(w) v = t

Ln(1/4) = x
Evaluate

Log(4) 64 = ?

Log(16) 4 = ?
 
Mathematics news on Phys.org
Vi Nguyen said:
Rewrite in exponential form:
Log(6) 1294 = 4

sure that isn't 1296 ?Log(w) v = t

if you meant w to be the base of the logarithm ... $w^t = v$

Ln(1/4) = x

$e^x = \dfrac{1}{4}$
Evaluate

Log(4) 64 = ?

note that $4^3 = 64$

Log(16) 4 = ?

note $16^{1/2} = 4$

logarithm to exponential relationship ...

$\log_b(a) = c \implies b^c = a$
 
Thanks
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
1K
Replies
13
Views
2K
Replies
6
Views
3K
Replies
1
Views
1K
Replies
2
Views
3K
Replies
4
Views
2K
Replies
5
Views
2K
Back
Top