- #1
JD_PM
- 1,131
- 158
- Homework Statement
- Given the action
\begin{equation*}
S=\int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right]
\end{equation*}
Where the dot denotes differentiation with respect to the conformal time ##\eta##.
Show that by introducing small fluctuations to the scalar field ##\phi##.
\begin{equation*}
\phi = \phi_0 (\eta) + \delta \phi (\eta, \vec x)
\end{equation*}
as well as defining ##\chi := a\delta \phi##, the action becomes
\begin{equation*}
S = S[\phi_0] + \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)
\end{equation*}
- Relevant Equations
- N/A
I simply plugged \phi = \phi_0 (\eta) + \delta \phi (\eta, \vec x) into the given action to get
\begin{align}
S &= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right] \nonumber \\
&= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi_0^2 + (\delta \dot \phi)^2 + 2\dot \phi_0 \delta \dot \phi- (\nabla (\delta \phi))^2 \right)-a^4V(\phi_0) -a^4V(\delta \phi) \right] \\
&= \int d^4 x \left[ \underbrace{\frac{a^2}{2} \dot \phi_0^2 + a^2\dot \phi_0 \delta \dot \phi -a^4V(\phi_0)}_{S[\phi_0]} + \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right]
\end{align}
However, I am stuck in how to show that
\begin{equation*}
\int d^4 x \left[ \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right] = \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)
\end{equation*}
I am convinced we'll have to use integration by parts and let the surface term vanish but I do not see how to do so...
Any help is appreciated.
Thank you
This doubt emerged while studying the lecture notes of my course. I attach the relevant pages
\begin{align}
S &= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right] \nonumber \\
&= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi_0^2 + (\delta \dot \phi)^2 + 2\dot \phi_0 \delta \dot \phi- (\nabla (\delta \phi))^2 \right)-a^4V(\phi_0) -a^4V(\delta \phi) \right] \\
&= \int d^4 x \left[ \underbrace{\frac{a^2}{2} \dot \phi_0^2 + a^2\dot \phi_0 \delta \dot \phi -a^4V(\phi_0)}_{S[\phi_0]} + \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right]
\end{align}
However, I am stuck in how to show that
\begin{equation*}
\int d^4 x \left[ \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right] = \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)
\end{equation*}
I am convinced we'll have to use integration by parts and let the surface term vanish but I do not see how to do so...
Any help is appreciated.
Thank you
This doubt emerged while studying the lecture notes of my course. I attach the relevant pages