- #1
ianchenmu
- 10
- 0
Homework Statement
The question is:
Let ##\pi=\left \{ x\in\mathbb{R}^n\;|\;x=(x_1,...,x_{n-1}, 0) \right \}##. Prove that if ##E\subset\pi## is a closed Jordan domain, and ##f:E\rightarrow\mathbb{R}## is Riemann integrable, then ##\int_{E}f(x)dV=0##.
Homework Equations
n/a
The Attempt at a Solution
(How to relate the condition it's Riemann integrable to the value is ##0##? The textbook I use define ##f## is integrable on ##E## iff ##\;\;\;\;(L)\int_{E}fdV=(U)\int_{E}fdV##)