- #1
binbagsss
- 1,305
- 11
Homework Statement
## g(s) = \sum\limits^{\infty}_{n=1} 1/n^{-s}, ##
Show that ##g(s)## converges uniformly for ## Re(s>1) ##
Homework Equations
Okay, so I think the right thing to look at is the Weistrass M test. This tells me that if I can find a ##M_{n}##, a real number, such that for each ##n## , ## | f_{n} | \leq M_{n} ##, and ## \sum\limits^{\infty}_{n=1} M_{n} ## converges, then ## \sum\limits^{\infty}_{n=1} f_{n}(s) ## converges, where ##f_{n}(s)= 1/n^{-s}## here.
The Attempt at a Solution
Okay, so if I consider the real part of ##s## only, it's pretty obvious that such a ##M_{n}## can be found for ##s>1##, i.e. ##M_{n} = 1/n ##.
However I'm pretty stuck on how to incorporate ##Im(s)## into this, which has no bounds specified right?
So say I assume ##Re (s) =1##, and we know that the series is then less than :
##\frac{1}{1^{1+iy}} + \frac{1}{2^{1+iy}} + \frac{1}{1^{3+iy}} + ... ##
= ##\frac{1}{1 . iy} + \frac{1}{2 . iy} + \frac{1}{3 . iy} +... ##
where ##s = 1 + iy ##,
but surely as ##Im(s) -> 0##, the imaginary part of each term in the series blows up, so I'm having a hard time understanding how it is bounded within any contraints on ##Im(s)## and only ##Re(s)##.
Many thanks in advance.