- #1
Sasha_Tw
- 4
- 1
I am reading the proof of the Riemannian Penrose Inequality (http://en.wikipedia.org/wiki/Riemannian_Penrose_inequality) by Huisken and Ilmamen in "The Inverse Mean Curvature Flow and the Riemannian Penrose Inequality" and I was wondering why they restrict their proof to the dimension ##n=3##.
I thought it might be because of the definition of the Geroch-Hawking mass, or the monotonicity of such a mass, and I was told that it works only in dimension ##n=3## because the Geroch-Hawking mass monotonicity formula relies on the Gauss-Bonnet Theorem. But the latter can be generalized to higher dimensions (for an even dimension), right (wikipedia: Generalized Gauss-Bonnet Theorem)?
Then which argument restricts their proof to ##n=3##?
I thought it might be because of the definition of the Geroch-Hawking mass, or the monotonicity of such a mass, and I was told that it works only in dimension ##n=3## because the Geroch-Hawking mass monotonicity formula relies on the Gauss-Bonnet Theorem. But the latter can be generalized to higher dimensions (for an even dimension), right (wikipedia: Generalized Gauss-Bonnet Theorem)?
Then which argument restricts their proof to ##n=3##?