Rigid body motion (RBM) transformation

In summary, rigid body motion (RBM) transformation refers to the movement of a solid object in space without any deformation. This transformation encompasses both translation, where the object moves in a straight line, and rotation, where the object spins around an axis. RBM is characterized by the preservation of distances and angles within the body, meaning that the shape and size of the object remain constant throughout the motion. Mathematical representations of RBM often utilize matrices and quaternions to efficiently describe the positioning and orientation of the rigid body in three-dimensional space.
  • #1
Mechanics_student
20
1
TL;DR Summary
Rigid body motion (RBM) transformation of interface points between a rigid and an elastic bodies in contact
68maW.png


ABfVc.png

7FCA8.png


Above are pictures of a problem in mechanics. An elastic body occupying domain ##\Omega## is supported below with a fixed support and from above with a rigid body. The following calculations aim to express the movements of the points located at the interface ##\Gamma_F## between the rigid and elastic bodies in terms of a reference point ##B##:
I don't understand them well, so I will explain my understanding (not sure it's correct), and confusion.
$$\vec{y}(x) = \vec{x} + \vec{u}(x)$$
The new position ##\vec{y}## of a point is equal to its original position ##\vec{x}## plus its displacement ##\vec{u}##.

Rigid body motion transformation:
$$\vec{y}(\vec{x}) = \vec{y}^B + \mathcal{R}(\beta) (\vec{x} - \vec{x}^B)$, where $\vec{x} \in \Gamma_F$$
where ##\mathcal{R}## is the rotation matrix as the rigid body rotates at an angle ##\beta##.
$$\mathcal{R} = \begin{bmatrix}
cos(\beta) & sin(\beta)\\
-sin(\beta) & cos(\beta)
\end{bmatrix}$$
Linearization for small deformation:
$$\vec{u}(x) - \vec{u}^B = \vec{y} - \vec{y}^B - (\vec{x} - \vec{x}^B)\\
= (\mathcal{R}(\beta) - I)(\vec{x}-\vec{x}^B)$$
where ##I## is the identity matrix.
For linearization we take,
$$\mathcal{R} = \begin{bmatrix}
0 & \beta\\
-\beta & 0
\end{bmatrix}$$
$$\Rightarrow \vec{u}(x)\mid_{\Gamma_F} = \vec{u}^B + (\mathcal{R}(\beta) - I)(\vec{x}-\vec{x}^B)$$
I don't understand the displacement of the points on the interface are parametrize by the displacement of a reference point that is also located on the interface undergoing transformation as well.

Isn't a reference point supposed to be fixed?
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Welcome, @Mechanics_student ! :cool:

I can't help with that complicated math, but I can tell you that from the point of reference of point B, the only movements that an observer sees are the deformation of the elastic body occupying domain Ω, and the rotation of the fixed support located below it.

You could also assume that two springs located where the green lines are replacing the elastic body.
For ideal conditions, the left side spring will compress the same distance that the left side spring is stretched, and in the same period of time.

I would assume that a point moment applied at a midpoint of the top interface replaces the actual moment created by the force F.
The vertical displacement of that midpoint would be zero, constantly increasing with the distance at which a point of that interface is located at.
 
  • #3
Lnewqban said:
Welcome, @Mechanics_student ! :cool:

I can't help with that complicated math, but I can tell you that from the point of reference of point B, the only movements that an observer sees are the deformation of the elastic body occupying domain Ω, and the rotation of the fixed support located below it.

You could also assume that two springs located where the green lines are replacing the elastic body.
For ideal conditions, the left side spring will compress the same distance that the left side spring is stretched, and in the same period of time.

I would assume that a point moment applied at a midpoint of the top interface replaces the actual moment created by the force F.
The vertical displacement of that midpoint would be zero, constantly increasing with the distance at which a point of that interface is located at.
Hi Lnewqban, thanks I'm glad you to be here. The thing is, point B is part of the rigid body, and so when the rigid body rotates, I assume that it rotates as well. That's why I don't understand why its taken as a reference. Another thing is that, the fixed support doesn't rotate, because it is fixed. So the upper interface of the elastic body is in contact and rotates exactly like the rigid body, and the lower interface of the elastic body in contact with the fixed support, doesn't undergo any displacements.
 
  • #4
Mechanics_student said:
Hi Lnewqban, thanks I'm glad you to be here. The thing is, point B is part of the rigid body, and so when the rigid body rotates, I assume that it rotates as well....
That could be, but in that case, force F should have been represented as being perpendicular to the top interface for any angle.
It has been represented as not solidly linked to point B, rather than rotating respect to it (case of F being applied on a shaft that rotates inside bushing B).

The other option could be that reference point B is part of the shaft rather than a fixed point of the top interface or rigid body.

Again, this is over my head, and I am only responding because nobody else with much better understanding of Math has.

I have found this article, which you may find helpful:
https://ucb-ee106.github.io/ee106a_jupyterbook/ForwardKinematics.html

revoluteJoint.png
 
  • Like
Likes Mechanics_student

FAQ: Rigid body motion (RBM) transformation

What is rigid body motion (RBM)?

Rigid body motion (RBM) refers to the movement of a solid object in which the distances between all points in the object remain constant over time. This means that the shape and size of the object do not change, and the object can translate (move linearly) or rotate (spin around an axis) in space.

What are the main types of rigid body transformations?

The main types of rigid body transformations include translation, rotation, and a combination of both. Translation involves moving every point of the object by the same distance in a specified direction, while rotation involves turning the object around a fixed axis. These transformations can be described mathematically using matrices.

How are rigid body transformations represented mathematically?

Rigid body transformations can be represented using transformation matrices. In three-dimensional space, a rigid body transformation can be expressed as a combination of a rotation matrix and a translation vector, often represented in homogeneous coordinates as a 4x4 matrix. This allows for the efficient computation of transformations using matrix multiplication.

What is the significance of the center of mass in rigid body motion?

The center of mass is a crucial point in rigid body motion, as it represents the average position of all the mass in the object. In many cases, the motion of the rigid body can be simplified by analyzing the motion of its center of mass, which moves in a straight line under the influence of external forces, while the body may also rotate around this point.

How does rigid body motion apply in robotics and computer graphics?

In robotics, rigid body motion is essential for controlling the movement of robotic arms and mobile robots, allowing for precise manipulation of objects in their environment. In computer graphics, RBM is used for animating characters and objects, enabling realistic simulations of movement, including collision detection and response between objects in a virtual environment.

Back
Top