Rindler Wedge: Timelike or Spacelike? Intuition & Light Cone

In summary, the Rindler wedge is timelike in Minkowski coordinates, but this may be related to the metric signature.
  • #1
knowwhatyoudontknow
30
5
TL;DR Summary
Rindler wedge - timelike or spacelike
Intuitively, the Rindler wedge is timelike in Minkowski coordinates and an object crossing the horizon enters a spacelike region. This seems
at odds with my understanding of the light cone where the 2 regions are reversed. I think this may be related to the signature of the metric but I'm not sure. What am I missing?
 
Physics news on Phys.org
  • #2
knowwhatyoudontknow said:
Summary:: Rindler wedge - timelike or spacelike

a spacelike region
I am not sure what you mean by “a spacelike region”. Do you mean a spacelike surface? Or a foliation?

Usually I would use the word “region” for a 4D open set in the spacetime. But then timelike and spacelike wouldn’t make sense. So I am not sure what you are asking.
 
  • #3
knowwhatyoudontknow said:
Intuitively, the Rindler wedge is timelike in Minkowski coordinates and an object crossing the horizon enters a spacelike region.
If this is your intuition then your intuition needs to be retrained. It makes no sense to say a region of spacetime is "timelike" or "spacelike"; those terms only make sense for worldlines or vectors.

You might be thinking of integral curves of the "boost" Killing vector field in Minkowski spacetime, which are timelike hyperbolas in the Rindler wedge but are spacelike hyperbolas above the future horizon or below the past horizon. However, those are curves, not regions.

knowwhatyoudontknow said:
This seems
at odds with my understanding of the light cone where the 2 regions are reversed.
I think what you are trying to say here is that, if we look at curves passing through the origin of Minkowski coordinates, timelike curves lie inside the light cone, null curves lie on the light cone, and spacelike curves lie outside the light cone. That is correct.

However, this has nothing whatever to do with worldlines in the Rindler wedge, since none of those worldlines pass through the origin. There are timelike worldlines in the Rindler wedge (i.e., the region of spacetime with ##x > 0## and ##|t| < x##) that stay in that wedge forever, and there are other timelike worldlines in that wedge that enter the wedge from below the past Rindler horizon (the line ##t = -x##) and/or exit the wedge to above the future Rindler horizon (the line ##t = x##). But those worldlines stay timelike everywhere regardless of their behavior relative to the wedge and its boundaries.
 
  • Like
Likes Orodruin
  • #4
knowwhatyoudontknow said:
Summary:: Rindler wedge - timelike or spacelike

Intuitively, the Rindler wedge is timelike in Minkowski coordinates and an object crossing the horizon enters a spacelike region. This seems
at odds with my understanding of the light cone where the 2 regions are reversed. I think this may be related to the signature of the metric but I'm not sure. What am I missing?
Are you aware that "the" light cone is wrong? There's a light cone associated with every event, and all events are outside some light cones, inside others, and on yet others. On a Minkowski diagram the Rindler wedge appears to correspond to one side of the region spacelike separated from the origin, sure, but that just tells you that you can't get into that particular wedge if you pass through the origin.

Note that "the" Rindler wedge is also a slight misnomer. Rindler coordinates have the center of their hyerbolae at the origin of Minkowski coordinates - but the origin of Minkowski coordinates is arbitrary. There is a different Rindler wedge associated with different families of Rindler observers.

Finally, it should be noted that the Rindler wedge doesn't match the exterior of a light cone except in 1d. It's the exterior of the causal future of the plane ##x=0,\ t=0##, while a light cone is normally the causal future of a single event. ##x=0,\ t=0## is only an event in 1d - it's a line or plane in 2d or 3d.
 
Last edited:
  • Like
Likes Orodruin
  • #5
Just to illustrate my last point, here's a Minkowski diagram with two spatial dimensions. The past and future light cones of some arbitrary event are shown in yellow and the boundary of a Rindler wedge whose center happens to pass through that event is shown in red. A few of the relevant Rindler observers are shown in blue.
1651217506433.png

If you sliced this diagram perpendicular to y (i.e., extracted a normal x/t Minkowski diagram) through the point of the cone you would recover the usual diagram of Rindler coordinates, because in that plane the slope of the light cone and the Rindler wedges are the same (and you could place the light cone center anywhere on the seam of the wedge - there's nothing special about where I've chosen to draw it). But shown in (2+1)d the light cone is a completely different shape from the Rindler wedge.
 
Last edited:

FAQ: Rindler Wedge: Timelike or Spacelike? Intuition & Light Cone

What is a Rindler wedge?

A Rindler wedge is a concept in physics that describes a region of spacetime that is bounded by two hyperplanes. It is named after the physicist Wolfgang Rindler.

What is the difference between a timelike and spacelike Rindler wedge?

A timelike Rindler wedge is a region of spacetime where the time component is greater than the space components, while a spacelike Rindler wedge is a region where the space components are greater than the time component.

How does a Rindler wedge relate to intuition and the light cone?

Intuition is our natural understanding of the world, and the light cone is a visual representation of causality in spacetime. The shape of the Rindler wedge can help us understand how causality and intuition are related in different regions of spacetime.

Can a Rindler wedge exist in both timelike and spacelike regions simultaneously?

No, a Rindler wedge can only exist in either a timelike or spacelike region, but not both at the same time. This is because the shape and properties of the wedge are dependent on the relative values of the time and space components.

How does the concept of a Rindler wedge impact our understanding of time and space?

The Rindler wedge helps us understand the relationship between time and space in different regions of spacetime. It also highlights the importance of considering both time and space components when analyzing physical phenomena. Additionally, the concept of the Rindler wedge has implications for theories such as general relativity and quantum mechanics.

Similar threads

Replies
8
Views
2K
Replies
57
Views
5K
Replies
10
Views
2K
Replies
4
Views
4K
Replies
5
Views
2K
Replies
10
Views
1K
Replies
3
Views
1K
Back
Top