Rise of Liquid from Horizontal Acceleration

In summary, the conversation is about finding the acceleration of an inverted L-shaped rod attached to an accelerated container and the direction of the string hanging from it. The participants discuss the possibility of the string hanging vertically and the observation from an observer moving with the liquid and the plumb bob. The conversation also references a link for further understanding.
  • #1
Ben2
37
9
Homework Statement
"Consider the horizontal acceleration of a mass of liquid in an open container. Acceleration of this kind causes the liquid surface to drop at the front of the tank and to rise at the rear. Show that the liquid surface slopes at an angle \theta with the horizontal, where tan \theta = a/g, a being the horizontal acceleration."
Relevant Equations
p = p_0 + \rho gh
The only way I get this is to make a the vertical acceleration at the bottom corner and g the horizontal acceleration there. This is from Halliday & Resnick's Physics. I've been unable to find anything there or in REA's Physics Problem Solver. Thanks for any hints submitted.
 
Physics news on Phys.org
  • #3
Suppose I attached an inverted L-shaped rod to the side of the accelerated container and suspended a string with a mass tied at the other end. Would the string hang vertically? If not, why not? Now consider the well known fact that masses at the ends of strings, a.k.a. plumb bobs are perpendicular to free surfaces of liquids. Would an observer moving as one with the liquid and the plumb bob see anything unusual? Do you see where this is going? If not, follow the link that was posted above just before I posted this.
 
  • Like
Likes Lnewqban and MatinSAR
  • #4
Ben2 said:
The only way I get this is to make a the vertical acceleration at the bottom corner and g the horizontal acceleration there.
Consider the case a=0.
Are you sure you are taking ##\theta## as the angle to the horizontal?
 

FAQ: Rise of Liquid from Horizontal Acceleration

What is the "Rise of Liquid from Horizontal Acceleration" phenomenon?

The "Rise of Liquid from Horizontal Acceleration" refers to the behavior of a liquid in a container when the container is subjected to horizontal acceleration. This phenomenon often results in the liquid rising on one side of the container and falling on the other, creating an inclined liquid surface.

What causes the liquid to rise on one side of the container during horizontal acceleration?

When a container is accelerated horizontally, the liquid inside experiences a pseudo-force opposite to the direction of acceleration. This pseudo-force, combined with gravity, causes the liquid to redistribute, leading to a rise on the side opposite to the direction of acceleration and a fall on the side in the direction of acceleration. The liquid surface inclines to balance the forces acting on it.

How can the angle of inclination of the liquid surface be calculated?

The angle of inclination of the liquid surface, θ, can be calculated using the formula tan(θ) = a/g, where 'a' is the horizontal acceleration and 'g' is the acceleration due to gravity. This relationship arises from the balance of forces acting parallel and perpendicular to the inclined liquid surface.

Does the shape of the container affect the rise of liquid due to horizontal acceleration?

The shape of the container does not affect the fundamental behavior of the liquid rise due to horizontal acceleration. However, the container's shape can influence the distribution of the liquid and the exact profile of the liquid surface. For instance, in irregularly shaped containers, the liquid surface might not form a simple plane.

What practical applications or implications does this phenomenon have?

This phenomenon has several practical applications, particularly in fields where fluid dynamics and container design are critical. Examples include designing fuel tanks in vehicles and aircraft to ensure proper fuel distribution during acceleration, understanding the behavior of liquids in moving containers, and in various industrial processes where liquids are transported or processed in accelerating environments.

Similar threads

Back
Top