Rise of Liquid from Horizontal Acceleration

AI Thread Summary
The discussion focuses on the relationship between vertical and horizontal acceleration in a liquid-filled container, referencing Halliday & Resnick's Physics. A scenario is proposed involving an inverted L-shaped rod and a mass on a string to explore whether the string would hang vertically under acceleration. The concept of plumb bobs being perpendicular to liquid surfaces is examined, questioning the observations of a moving observer. The conversation hints at the complexities of understanding acceleration in a fluid context. Overall, the thread seeks clarification on the dynamics of acceleration and its effects on liquid behavior.
Ben2
Messages
37
Reaction score
9
Homework Statement
"Consider the horizontal acceleration of a mass of liquid in an open container. Acceleration of this kind causes the liquid surface to drop at the front of the tank and to rise at the rear. Show that the liquid surface slopes at an angle \theta with the horizontal, where tan \theta = a/g, a being the horizontal acceleration."
Relevant Equations
p = p_0 + \rho gh
The only way I get this is to make a the vertical acceleration at the bottom corner and g the horizontal acceleration there. This is from Halliday & Resnick's Physics. I've been unable to find anything there or in REA's Physics Problem Solver. Thanks for any hints submitted.
 
Physics news on Phys.org
Suppose I attached an inverted L-shaped rod to the side of the accelerated container and suspended a string with a mass tied at the other end. Would the string hang vertically? If not, why not? Now consider the well known fact that masses at the ends of strings, a.k.a. plumb bobs are perpendicular to free surfaces of liquids. Would an observer moving as one with the liquid and the plumb bob see anything unusual? Do you see where this is going? If not, follow the link that was posted above just before I posted this.
 
  • Like
Likes Lnewqban and MatinSAR
Ben2 said:
The only way I get this is to make a the vertical acceleration at the bottom corner and g the horizontal acceleration there.
Consider the case a=0.
Are you sure you are taking ##\theta## as the angle to the horizontal?
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top