- #1
Titan97
Gold Member
- 450
- 18
In an RLC series circuit let applied EMF be given ##V=V_0\sin\omega t##, $$Z=Z_C+Z_R+Z_L=R+i\left(\frac{1}{\omega C}-\omega L\right)$$
$$|Z|=\sqrt{R^2+\left(\frac{1}{\omega C}-\omega L\right)^2}$$
Then $$i(t)=\frac{V(t)}{Z}=\frac{V_0e^{i\omega t}}{R+i\left(\frac{1}{\omega C}-\omega L\right)}$$
Its given in my book that
$$i(t)=\frac{V_0(\sin\omega t+\phi)}{\sqrt{R^2+\left(\frac{1}{\omega C}-\omega L\right)^2}}$$
Why are they considering a phase difference of ##\phi##?
Also, why are they taking modulus of ##Z## and only the imaginary part of applied voltage?
What is the difference between the first ##i(t)## and the second ##i(t)##?
$$|Z|=\sqrt{R^2+\left(\frac{1}{\omega C}-\omega L\right)^2}$$
Then $$i(t)=\frac{V(t)}{Z}=\frac{V_0e^{i\omega t}}{R+i\left(\frac{1}{\omega C}-\omega L\right)}$$
Its given in my book that
$$i(t)=\frac{V_0(\sin\omega t+\phi)}{\sqrt{R^2+\left(\frac{1}{\omega C}-\omega L\right)^2}}$$
Why are they considering a phase difference of ##\phi##?
Also, why are they taking modulus of ##Z## and only the imaginary part of applied voltage?
What is the difference between the first ##i(t)## and the second ##i(t)##?