- #1
eehelp150
- 237
- 0
Homework Statement
https://www.physicsforums.com/attachments/upload_2016-11-25_8-51-19-png.109406/
Find the differential equation for Vo
Vin is a square wave
Homework Equations
KCL/KVL
The Attempt at a Solution
At Node V1:
##\frac{V_1-V_in}{R_1} + \frac{1}{L_1}\int_{0}^{t}(V_1-V_2) = 0##
At Node V2:
##\frac{1}{L_1}\int_{0}^{t}(V_2-V_1)+C_1*\dot{V_2}+\frac{V_2}{R_2}=0##
V2 = VoDifferentiate equation 2 and solve for V1
##V_2-V_1+L_1C_1\ddot{V_2}+\frac{L_1\dot{V_2}}{R_2}##
##V_1=V_2+L_1C_1\ddot{V_2}+\frac{L_1\dot{V_2}}{R_2}##
Plug into equation 1
##\frac{V_2}{R_1}+\frac{L_1C_1\ddot{V_2}}{R_1}+\frac{L_1\dot{V_2}}{R_1R_2}+\frac{1}{L_1}\int_{0}^{t}(L_1C_1\ddot{V_2}+\frac{L_1\dot{V_2}}{R_2}=\frac{V_{in}}{R_1})##
Get rid of integral
##\frac{V_2}{R_1}+\frac{L_1C_1\ddot{V_2}}{R_1}+\frac{L_1\dot{V_2}}{R_1R_2}+C_1\dot{V_2}+\frac{{V_2}}{R_2}=\frac{V_{in}}{R_1}##
Multiply everything by ##\frac{R_1}{L_1C_1}##
##\frac{V_2}{L_1C_1}+\ddot{V_2}+\frac{\dot{V_2}}{C_1R_2}+\frac{R_1\dot{V_2}}{L_1}+\frac{R_1{V_2}}{L_1C_1R_2}=\frac{V_{in}}{L_1C_1}##Is my work correct?
Last edited by a moderator: