MHB RLC Series Circuit: State Equations

AI Thread Summary
The discussion focuses on deriving state equations for an RLC series circuit using capacitor voltage \(v_c(t)\) and inductor current \(i_L(t)\) as state variables. Participants clarify that the governing equations should express these states, leading to the formulation \(v_c(t) + R i_L(t) + \frac{di_L(t)}{dt} = e(t)\) and \(\frac{dv_c(t)}{dt} = C i_L(t)\). The state transition matrix is also discussed, with a specific matrix derived for the system. Questions arise regarding the definitions of \(\mathbf{B}\) and \(\mathbf{U}(s)\), particularly how the factor \(\frac{2}{s}\) emerges in the Laplace Transform context. The conversation emphasizes the importance of understanding the relationships between state variables and external inputs in circuit analysis.
Dustinsfl
Messages
2,217
Reaction score
5
Using the capacitor voltage \(v_c(t)\) and the inductor current \(i_L(t)\) as states, write the state equations for the RLC series circuit shown in the figure.

mc8hQL5.png


We can write that \(e(t) = iR + \frac{di}{dt} + \frac{1}{C}\int i(t)dt\). I am not sure with what it wants when it says to write it as states.
 
Mathematics news on Phys.org
Shouldn't it be $e(t) = iR + L \frac{di}{dt} + \frac{1}{C}\int i(t)dt?$ I think when they say "state", they mean that the DE should be in that unknown variable. So if $i_{L}$ is the state variable, write the DE with $i_{L}$ as the unknown function.
 
dwsmith said:
Using the capacitor voltage \(v_c(t)\) and the inductor current \(i_L(t)\) as states, write the state equations for the RLC series circuit shown in the figure.

mc8hQL5.png


We can write that \(e(t) = iR + \frac{di}{dt} + \frac{1}{C}\int i(t)dt\). I am not sure with what it wants when it says to write it as states.

In electric egeneering are called states of a network somewhat is related to the 'energy' contained in the reactive elements, i.e. the voltage across a capacitors and the current in inductors. In Your case the network has two states, i.e.the two unknown variables are $v_{c} (t)$ and $i_{L} (t)$. The equation governing the network are...

$\displaystyle v_{c} (t) + R\ i_{L}(t) + i_{L}^{\ '} (t) = e(t)$

$\displaystyle v_{c}^{\ '} (t) = C\ i_{L} (t)\ (1)$

Kind regards

$\chi$ $\sigma$
 
Last edited:
I have determined my state transition matrix as
\[
\Phi(s) =
\frac{1}{(s + 1)(s + 2)}
\begin{pmatrix}
s & -1\\
2 & s + 3
\end{pmatrix}\Rightarrow
\varphi(t) = e^{-t}
\begin{pmatrix}
2e^{-t} - 1 & e^{-t} - 1\\
2(1 - e^{-t}) & 2 - e^{-t}
\end{pmatrix}.
\]
Then
\[
\begin{pmatrix}
i_L(s)\\
v_c(s)
\end{pmatrix} = \Phi(s)\mathbf{B}\mathbf{U}(s)
\]
What is \(\mathbf{B}\) and \(\mathbf{U}(s)\).
Additionally, I have that
\[
\begin{pmatrix}
\frac{di_L(t)}{dt}\\
\frac{dv_c(t)}{dt}
\end{pmatrix} =
\begin{pmatrix}
\frac{-R}{L} & \frac{-1}{L}\\
\frac{1}{C} & 0
\end{pmatrix}
\begin{pmatrix}
i_L(t)\\
v_c(t)
\end{pmatrix}
+
\begin{pmatrix}
\frac{1}{L}\\
0
\end{pmatrix}e(t) \qquad (*)
\]
where \(R = 3\), \(L = 1\), and \(C = \frac{1}{2}\).

The solution has
\[
\Phi(s)\mathbf{B}\mathbf{U}(s) =
\begin{pmatrix}
\frac{s}{(s+1)(s+3)}\\
\frac{2}{(s+1)(s+3)}
\end{pmatrix}
\frac{2}{s}
\begin{pmatrix}
e^{-s} & -e^{-2s}
\end{pmatrix}
\]
Therefore, \(\mathbf{U}(s) = \frac{2}{s}
\begin{pmatrix}
e^{-s} & -e^{-2s}
\end{pmatrix}\) where does this come from?

If we take the Laplace Transform of \((*)\), we end up with the factor \(\frac{2}{s}\). That is, we have
\begin{gather}
I(s) = \frac{E(s) - V(s)}{s + 3}\\
V(s) = \frac{2}{s}I(s)
\end{gather}
but that still leaves the question where does \(U(s)\) come from?
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
32
Views
2K
Replies
6
Views
2K
Replies
22
Views
2K
Replies
15
Views
5K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
10
Views
436
Back
Top