- #1
dimpledur
- 194
- 0
Homework Statement
Hello,
I was wondering if anyone could confirm my work for the following graph:
I'm supposed to find the rms for 1 complete cycle (0, 10ms)
The time constant is 1ms.
Charging phase, v=1-e^(-t/1ms)=1-e^(-1000t)
discharging phase, v=e^(-1000t)
The Attempt at a Solution
First, I find the rms contribution for the charging stage.
[tex]\sqrt{\frac{1}{10^{-3}}\int ^{5(10)^{-3}}_{0}{(1-e^{-1000t})^2dt}}=\sqrt{\frac{1}{10^{-3}}(t-\frac{e^{-2000t}}{2000}+\frac{e^{-1000t}}{500}|^{5(10)^{-3}}_{0})}=0.59274 V[/tex]
Next, I found the contribution of the discharge phase:
[tex]\sqrt{\frac{1}{10^{-3}}\int ^{5(10)^{-3}}_{0}{(e^{-1000t})^2dt}}=\sqrt{\frac{1}{10^{-3}}(-\frac{e^{-2000t}}{2000}|^{5(10)^{-3}}_{0})}=0.707091 V[/tex]
and the effective rms for the entire cycle is
[tex]v_{rms}=\sqrt{(0.59274 V)^2+(0.707091 V)^2}=0.923 V[/tex]
Or do I have to multiply each of the functions underneatht he the sqrt by a factor of 5(10)^-3 ?
Last edited: