MHB Root or Ratio Test: Interval of Convergence

AI Thread Summary
To find the interval of convergence for the series Σ(-x/10)^(2k), both the root and ratio tests confirm that the series converges when |x|<10. Expressing the series as a geometric series leads to the same conclusion, indicating convergence for |x|<10 and divergence for |x|>10. For x values of ±1, the series diverges. Therefore, the interval of convergence is determined to be (-10, 10). The analysis effectively demonstrates the convergence behavior of the series using multiple testing methods.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Σ(-x/10)^(2k) how do I find the interval of convergence using the root or ratio test?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
We can express $\displaystyle\sum_{k=0}^{\infty}\left(\frac{-x}{10}\right)^{2k}=\sum_{k=0}^{\infty}\left(\frac{x^2}{100}\right)^{k}.$ Then,

$(a)$ Considering this series as a geometric series:
$$\left| \frac{x^2}{100} \right|<1\Leftrightarrow x^2<100\Leftrightarrow |x|<10$$
and the series is convergent iff $|x|<10.$

$(b)$ Using the ratio test:
$$\lim_{k\to \infty}\;\left| \left(\frac{x^2}{100}\right)^{k+1} \left(\frac{100}{x^2}\right)^{k} \right|=\frac{x^2}{100}<1\Leftrightarrow |x|<10$$
So, the series is convergent if $|x|<10$ and divergent if $|x|>10.$ If $x=\pm 1$ we get $\displaystyle\sum_{k=0}^{\infty}1=1+1+\ldots$ (divergent).

$(c)$ Using the root test:
$$\lim_{k\to \infty}\;\left| \left(\frac{x^2}{100}\right)^{k} \right|^{1/k}=\frac{x^2}{100}<1\Leftrightarrow |x|<10$$
So, the series is convergent if $|x|<10$ and divergent if $|x|>10.$

The interval of convergence is $(0,1).$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top