- #1
MathematicalPhysicist
Gold Member
- 4,699
- 373
I found that the cartan subalgebra of ##sp(4,\mathbb{R})## is the algebra with diagonal matrices in ##sp(4,\mathbb{R})##.
Now to find out the roots I need to compute:
##[H,X]=\alpha(H) X##
For every ##H## in the above Cartan sublagebra, for some ##X \in sp(4,\mathbb{R})##
Now, I know that ##X## is of the form:
##\left[ {\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14}\\
a_{21} & a_{22} & a_{23} & a_{13} \\
a_{31} & a_{32} & -a_{22} & -a_{12}\\
a_{41} & a_{31} & -a_{21} & -a_{11}\\
\end{array}} \right]##
So if I take ##H=diag(h_{11},h_{22},h_{33},h_{44})##, I am getting the next equality:
##\left[ {\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14}\\
a_{21} & a_{22} & a_{23} & a_{13} \\
a_{31} & a_{32} & -a_{22} & -a_{12}\\
a_{41} & a_{31} & -a_{21} & -a_{11}\\
\end{array}} \right] = \left[ {\begin{array}{ccccc} 0 & (h_{11}-h_{22})a_{12} & (h_{11}-h_{33})a_{13} & (h_{11}-h_{44})a_{14}\\
(h_{22}-h_{11})a_{21} & 0 & (h_{22}-h_{33})a_{23} &(h_{22}-h_{44}) a_{13} \\
(h_{33}-h_{11})a_{31} & (h_{33}-h_{22})a_{32} & 0 & (h_{44}-h_{33})a_{12}\\
(h_{44}-h_{11})a_{41} & (h_{44}-h_{22})a_{31} & (h_{33}-h_{44})a_{21} & 0\\
\end{array}} \right]##
Which means that the roots should be ##h_{11}-h_{44} , h_{22}-h_{33} , h_{33}-h_{22}, h_{44}-h_{11}##, and accodingly the root vectors are:
##\left[ {\begin{array}{ccccc}0 & 0 & 0 & a_{14}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
\end{array}} \right],\left[ {\begin{array}{ccccc}0 & 0 & 0 & 0\\
0 & 0 & a_{23} & 0 \\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
\end{array}} \right],\left[ {\begin{array}{ccccc}0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 \\
0 & a_{32} & 0 & 0\\
0 & 0 & 0 & 0\\
\end{array}} \right], \left[ {\begin{array}{ccccc}0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0\\
a_{41} & 0 & 0 & 0\\
\end{array}} \right]## respectively.
Is this right, or did I forget something?
Thanks in advance.
Now to find out the roots I need to compute:
##[H,X]=\alpha(H) X##
For every ##H## in the above Cartan sublagebra, for some ##X \in sp(4,\mathbb{R})##
Now, I know that ##X## is of the form:
##\left[ {\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14}\\
a_{21} & a_{22} & a_{23} & a_{13} \\
a_{31} & a_{32} & -a_{22} & -a_{12}\\
a_{41} & a_{31} & -a_{21} & -a_{11}\\
\end{array}} \right]##
So if I take ##H=diag(h_{11},h_{22},h_{33},h_{44})##, I am getting the next equality:
##\left[ {\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14}\\
a_{21} & a_{22} & a_{23} & a_{13} \\
a_{31} & a_{32} & -a_{22} & -a_{12}\\
a_{41} & a_{31} & -a_{21} & -a_{11}\\
\end{array}} \right] = \left[ {\begin{array}{ccccc} 0 & (h_{11}-h_{22})a_{12} & (h_{11}-h_{33})a_{13} & (h_{11}-h_{44})a_{14}\\
(h_{22}-h_{11})a_{21} & 0 & (h_{22}-h_{33})a_{23} &(h_{22}-h_{44}) a_{13} \\
(h_{33}-h_{11})a_{31} & (h_{33}-h_{22})a_{32} & 0 & (h_{44}-h_{33})a_{12}\\
(h_{44}-h_{11})a_{41} & (h_{44}-h_{22})a_{31} & (h_{33}-h_{44})a_{21} & 0\\
\end{array}} \right]##
Which means that the roots should be ##h_{11}-h_{44} , h_{22}-h_{33} , h_{33}-h_{22}, h_{44}-h_{11}##, and accodingly the root vectors are:
##\left[ {\begin{array}{ccccc}0 & 0 & 0 & a_{14}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
\end{array}} \right],\left[ {\begin{array}{ccccc}0 & 0 & 0 & 0\\
0 & 0 & a_{23} & 0 \\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
\end{array}} \right],\left[ {\begin{array}{ccccc}0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 \\
0 & a_{32} & 0 & 0\\
0 & 0 & 0 & 0\\
\end{array}} \right], \left[ {\begin{array}{ccccc}0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0\\
a_{41} & 0 & 0 & 0\\
\end{array}} \right]## respectively.
Is this right, or did I forget something?
Thanks in advance.