MHB Roots of a Polynomial Function A²+B²+18C>0

AI Thread Summary
The discussion centers on proving that for a polynomial P(x) with three real roots, at least two of which are distinct, the inequality A²+B²+18C>0 holds. The roots are represented as a, b, and c, leading to the expressions for A, B, and C based on these roots. The use of the AM-GM inequality demonstrates that the sum of the roots and the sum of the products of the roots are both greater than zero under certain conditions. However, a counterexample is presented where two roots are negative, resulting in A²+B²+18C being less than zero, suggesting that an additional condition is necessary to ensure the inequality holds. The conclusion emphasizes that the problem's validity hinges on excluding cases where two roots are negative.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If a polynomial $P(x)=x^3+Ax^2+Bx+C$ has three real roots at least two of which are distinct, prove that $A^2+B^2+18C>0$.
 
Mathematics news on Phys.org
anemone said:
If a polynomial $P(x)=x^3+Ax^2+Bx+C$ has three real roots at least two of which are distinct, prove that $A^2+B^2+18C>0$.
[sp]Let $a,b,c$ be the three (real) roots of $P(x)$. Then $A = -(a+b+c)$, $B = bc+ca+ab$ and $C = -abc$. So we want to prove that $$(a+b+c)^2 + (bc+ca+ab)^2 + 18abc > 0.$$

Let $m = (abc)^{1/3}$ be the geometric mean of $a,b,c$. Since those numbers are not all equal, the AM-GM inequality is strict, so that $a+b+c > 3m$. For the same reason, $bc+ca+ab > 3m^2$. Therefore $$(a+b+c)^2 + (bc+ca+ab)^2 + 18abc > 9m^2 + 9m^4 + 18m^3 = 9m^2(1-m)^2 \geqslant0.$$
[/sp]
 
Opalg said:
[sp]Let $a,b,c$ be the three (real) roots of $P(x)$. Then $A = -(a+b+c)$, $B = bc+ca+ab$ and $C = -abc$. So we want to prove that $$(a+b+c)^2 + (bc+ca+ab)^2 + 18abc > 0.$$

Let $m = (abc)^{1/3}$ be the geometric mean of $a,b,c$. Since those numbers are not all equal, the AM-GM inequality is strict, so that $a+b+c > 3m$. For the same reason, $bc+ca+ab > 3m^2$. Therefore $$(a+b+c)^2 + (bc+ca+ab)^2 + 18abc > 9m^2 + 9m^4 + 18m^3 = 9m^2(1-m)^2 \geqslant0.$$
[/sp]

Hello Opalg

Cannot apply AM-GM inequality as a,b,c are not positive
 
kaliprasad said:
Hello Opalg

Cannot apply AM-GM inequality as a,b,c are not positive
[sp]Good point – I completely overlooked that. However, if one or three of the roots are negative then $C$ will be positive, so the inequality $A^2+B^2+18C>0$ will certainly hold. So the remaining case to deal with is if two of the roots are negative and the third one is positive. I'll have to think about that ... .

[/sp]
Edit:
[sp]The polynomial $x^3 + x^2 - x - 1 = (x+1)^2(x-1)$ has $A=1$, $B=C=-1$, and $A^2 + B^2 + 18C = -16 <0$. So I think that the problem probably needed an extra condition to exclude the case where two of the roots are negative.

[/sp]
 
Last edited:
Opalg said:
[sp]
Edit:
[sp]The polynomial $x^3 + x^2 - x - 1 = (x+1)^2(x-1)$ has $A=1$, $B=C=-1$, and $A^2 + B^2 + 18C = -16 <0$. So I think that the problem probably needed an extra condition to exclude the case where two of the roots are negative.

[/sp]

I just checked the source of the problem, I didn't leave out anything. But you made the point, Opalg, that one such counterexample is suffice to disprove the validity of the problem. The problem is only valid if the condition to exclude the case where two of the real roots are negative is in place.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top