- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to rotate the point $(10, 11)$ with rotation angle $\frac{\pi}{3}$ around the point $P=(-1,-1)$.
I have done the following:
Therefore, the image of $(10\mid 11)$ is $\left (4 -\frac{11\sqrt{3}}{2}, 5\sqrt{3} + \frac{9}{2}\right )$. Is everything correct? Have I done the translation right? (Wondering)
I want to rotate the point $(10, 11)$ with rotation angle $\frac{\pi}{3}$ around the point $P=(-1,-1)$.
I have done the following:
- We translate about $-\vec{OP}$: \begin{equation*}P'=(-1\mid -1)-(-1\mid -1)=(0\mid 0)\end{equation*}
- We rotate around the origin: \begin{equation*}R_{\frac{\pi}{3}}\cdot \binom{10}{11}=\begin{pmatrix}\cos \frac{\pi}{3} & -\sin \frac{\pi}{3} \\ \sin \frac{\pi}{3} & \cos\frac{\pi}{3}\end{pmatrix}\binom{10}{11}=\begin{pmatrix}\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{pmatrix}\binom{10}{11}=\begin{pmatrix}\frac{1}{2}\cdot 10 -\frac{\sqrt{3}}{2}\cdot 11 \\ \frac{\sqrt{3}}{2}\cdot 10 + \frac{1}{2}\cdot 11\end{pmatrix}=\begin{pmatrix}5 -\frac{11\sqrt{3}}{2} \\ 5\sqrt{3} + \frac{11}{2}\end{pmatrix}\end{equation*}
- We translate about $\vec{OP}$ :
\begin{equation*}\begin{pmatrix}5 -\frac{11\sqrt{3}}{2} \\ 5\sqrt{3} + \frac{11}{2}\end{pmatrix}+\begin{pmatrix}-1 \\ -1\end{pmatrix}=\begin{pmatrix}4 -\frac{11\sqrt{3}}{2} \\ 5\sqrt{3} + \frac{9}{2}\end{pmatrix}\end{equation*}
Therefore, the image of $(10\mid 11)$ is $\left (4 -\frac{11\sqrt{3}}{2}, 5\sqrt{3} + \frac{9}{2}\right )$. Is everything correct? Have I done the translation right? (Wondering)
Last edited by a moderator: