- #1
jchodak2
- 5
- 0
I was doing some rotation problems the other day out of my physics textbook when I realized that invariably all the problems dealt with rotation about fixed point (levers and pendulums and such). So I imagined a case in which I had a bar with a certain mass and dimension floating in space and I applied an impulse at some point on the bar (shot a bullet or a piece of gum, ellastic or inellastic, whatever), and I wanted to know how fast the bar would begin to translate compared to how fast it would rotate depending on where along the bar I applied the impulse (obvioulsy if I shot at it dead center it would translate only). I wasn't sure how to work this out and how I would employ the relevant kinematic equations for translation and rotation and linear vs angular momentum. This seems like an easy enough and straightforward problem, but I couldn't work it out and I found it interesting that my book had absolutely no problems of this kind. Can anyone help me?