Rotation of macroscopic magnetization = average (Magnetization current density)

  • #1
LeoJakob
24
2
Thread moved from the technical forums to the schoolwork forums
Homework Statement
rotation of macroscopic magnetization = averege (Magnetization current density )
Relevant Equations
##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##

,## \vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}##

,##\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}##

, ##\vec{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \vec{\nabla}) \vec{A}-\vec{B}(\vec{\nabla} \cdot \vec{A})+\vec{A}(\vec{\nabla} \cdot \vec{B})-(\vec{A} \cdot \vec{\nabla}) \vec{B} ##
In the headline to the question the statement should have been:
rotation of macroscopic magnetization = averege (Magnetization current density )

The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$

Proof:
$$
\vec{\nabla} \times \vec{M}=\overline{\vec{j}_{mag}}
$$

Attempt
$$\begin{array}{l}\vec{\nabla} \times \vec{M}=\vec{\nabla} \times\left(\frac{1}{V} \sum \limits_{i=1}^{N} \vec{m}_{i}\right) \\ =\frac{1}{V} \vec{\nabla} \times\left(\sum \limits_{i=1}^{n} \frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \partial^{3} \vec{r}^{\prime}\right) \\ =\frac{1}{2 V} \sum \limits_{i=1}^{n} \underbrace{\vec{\nabla} \times\left(\left(\overrightarrow{r^{\prime}}-\overrightarrow{R_{i}}\right) \times \overrightarrow{j_{\text {mag }}^{(i)}}\left(\overrightarrow{r^{\prime}}\right)\right)}_{=(i)} d^{3} \vec{r}^{\prime} \\
= ?\end{array}$$

$$
\begin{array}{l}(i)=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\ +\left(\vec{r}^{\prime}-\vec{R}_{i}\right)(\underbrace{\vec{\nabla} \cdot \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)}_{=0})-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)
\\
\\
=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\
-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \end{array} $$

I don’t have more ideas right now, can someone help me?
 
Last edited:
Physics news on Phys.org
  • #2
LeoJakob said:
The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$

As indicated, ##\vec M (\vec r)## is a function of the position vector ##\vec r## for a point in the medium. So, the right-hand side of the above equation for ##\vec M(\vec r)## must be a function of ##\vec r##. Note, however, that ##\vec m_i## for the magnetization of the ##i^{th}## particle located at ##\vec R_i## does not depend on the vector ##\vec r##.

However, the expression ##\frac 1 v \sum_{i=1}^N \vec m_i## does depend on ##\vec r## because the “mesoscopic” volume ##v## is assumed to be centered on ##\vec r##. The sum is over all particles located in ##v##. So, the sum does depend on ##\vec r## even though ##m_i## for a particular particle does not depend on ##\vec r##.

When forming the curl (“rotation”) of ##\vec M(\vec r)##, the derivative operators are derivatives with respect to the components of ##\vec r##. These derivative operators do not act on ##\vec r’## appearing in the expression for ##\vec m_i##.

The change in ##\vec M(\vec r)## for a small change ##\vec {dr}## in ##\vec r## is due to shifting the location of the volume ##v## by ##\vec {dr}## and performing the sum ##\sum_{i= 1}^N \vec m_i## over the particles in this shifted volume.

So, it’s pretty tricky. The text says “Analogous to the macroscopic electric polarization, introduce the macroscopic magnetizarion…”. Perhaps the textbook has already done a similar calculation for electric polarization ##\vec P(\vec r)## in deriving ##\vec{\nabla} \cdot \vec P(\vec r) = - \rho_{\text {pol}}(\vec r)##, where ##\rho_{\text {pol}}## is the polarization charge density. If so, it might be helpful to study this derivation before tackling the magnetization problem.
 
  • Like
Likes LeoJakob

FAQ: Rotation of macroscopic magnetization = average (Magnetization current density)

What is macroscopic magnetization?

Macroscopic magnetization refers to the magnetic moment per unit volume of a material, averaged over a large number of atoms or molecules. It is a vector quantity that represents the overall magnetic behavior of a bulk material.

How does macroscopic magnetization relate to magnetization current density?

Magnetization current density is a concept used to describe the equivalent current that would produce the same magnetic effect as the magnetization of the material. The rotation of macroscopic magnetization can be mathematically related to the average magnetization current density through Maxwell's equations and the concept of bound currents in magnetized materials.

What causes the rotation of macroscopic magnetization?

The rotation of macroscopic magnetization can be caused by external magnetic fields, mechanical rotation of the material, or internal interactions such as spin-orbit coupling and magnetic anisotropy. These factors can change the direction of the magnetization vector within the material.

How is the rotation of macroscopic magnetization measured?

The rotation of macroscopic magnetization is typically measured using techniques such as magnetometry, ferromagnetic resonance (FMR), or magnetic force microscopy (MFM). These methods allow scientists to observe changes in the direction and magnitude of magnetization within a material.

What are the practical applications of studying the rotation of macroscopic magnetization?

Understanding the rotation of macroscopic magnetization has practical applications in various fields, including data storage (e.g., hard drives and magnetic memory), magnetic sensors, and spintronics. It helps in designing materials with specific magnetic properties and improving the performance of magnetic devices.

Back
Top