- #1
happyparticle
- 465
- 21
- Homework Statement
- Rotation of ##\pi /4## of the stress tensor around the Z-axis
- Relevant Equations
- $$D'_{xy} = \frac{1}{2} D_{xx} - \frac{1}{2} D_{yy}$$
$$\tau'_{xy} = \frac{1}{2} \tau_{xx} -\frac{1}{2} \tau_{yy}$$
$$\tau'_{xy} = \frac{1}{2} (C_{11} - C_{12})D_{xx} + \frac{1}{2} (C_{12} - C_{11}) D_{yy} + C_{12}D_{zz}$$
First of all I have this system
$$\begin{pmatrix}\tau_{xx} \\ \tau_{yy} \\ \tau_{zz} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{pmatrix}=\begin{pmatrix}C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{44} \end{pmatrix}\begin{pmatrix}D_{xx} \\ D_{yy} \\ D_{zz} \\ D_{xy} \\ D_{yz} \\ D_{zx} \end{pmatrix}$$
Then I perform a rotation of ##\pi /4## around the z-axis.
For ##\tau_{xy}## I get
$$D'_{xy} = \frac{1}{2} D_{xx} - \frac{1}{2} D_{yy}$$
$$\tau'_{xy} = \frac{1}{2} \tau_{xx} -\frac{1}{2} \tau_{yy}$$
$$\tau'_{xy} = \frac{1}{2} (C_{11} - C_{12})D_{xx} + \frac{1}{2} (C_{12} - C_{11}) D_{yy}$$
Also,
$$\tau_{xy} = C_{44}D_{xy}$$
The answer I'm looking for is ##C_{11} = C_{44} + C_{12}##
I read that the ##C_{ij}## must be invariant. What does it means here ? Since there is no ##D_{xy}## term in the expression for ##\tau'_{xy}## , ##C_{44}## must be 0 and ##C_{12} = C_{11}##?
However, this is not the right answer. I'm not sure to understand.
$$\begin{pmatrix}\tau_{xx} \\ \tau_{yy} \\ \tau_{zz} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{pmatrix}=\begin{pmatrix}C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{44} \end{pmatrix}\begin{pmatrix}D_{xx} \\ D_{yy} \\ D_{zz} \\ D_{xy} \\ D_{yz} \\ D_{zx} \end{pmatrix}$$
Then I perform a rotation of ##\pi /4## around the z-axis.
For ##\tau_{xy}## I get
$$D'_{xy} = \frac{1}{2} D_{xx} - \frac{1}{2} D_{yy}$$
$$\tau'_{xy} = \frac{1}{2} \tau_{xx} -\frac{1}{2} \tau_{yy}$$
$$\tau'_{xy} = \frac{1}{2} (C_{11} - C_{12})D_{xx} + \frac{1}{2} (C_{12} - C_{11}) D_{yy}$$
Also,
$$\tau_{xy} = C_{44}D_{xy}$$
The answer I'm looking for is ##C_{11} = C_{44} + C_{12}##
I read that the ##C_{ij}## must be invariant. What does it means here ? Since there is no ##D_{xy}## term in the expression for ##\tau'_{xy}## , ##C_{44}## must be 0 and ##C_{12} = C_{11}##?
However, this is not the right answer. I'm not sure to understand.
Last edited: