- #1
PoofyHair
- 4
- 0
Hello,
Hopefully this is in the correct place.
I am presented with a the following problem.
"A hamster running on an exercise wheel, exterts a torque on the wheel. If the wheel has an angular velocity that can be expressed as:
[tex]\omega[/tex](t)= 3.0 rads/s + (8.0 rad/s[tex]^{}2[/tex])t + (1.5 rad/s[tex]^{}4[/tex])t[tex]^{}3[/tex]. Calculate the torque on the wheel as a function of time. Assume that the moment of inertia is 500 kg*m[tex]^{}2[/tex] and is constant."
[tex]\tau[/tex]=Fr F=m[tex]\alpha[/tex] and I=mr[tex]^{}2[/tex]
I then said that [tex]\tau[/tex]=m[tex]\alpha[/tex]r. Next I set I=mr[tex]^{}2[/tex] equal to m and plugged it into [tex]\tau[/tex]=m[tex]\alpha[/tex]r.
I got [tex]\tau[/tex]=I[tex]\alpha[/tex]/r.
After that I differentiated the angular velocity and got [tex]\alpha[/tex](t)=8.0 + 3(1.5)t[tex]^{}2[/tex]. I plugged it in [tex]\tau[/tex]=I[tex]\alpha[/tex]/r and solved. My end result is: [tex]\tau[/tex](t)=2250t[tex]^{}2[/tex] + 4000[tex]/[/tex]r.
Is this correctly done?
Hopefully this is in the correct place.
I am presented with a the following problem.
"A hamster running on an exercise wheel, exterts a torque on the wheel. If the wheel has an angular velocity that can be expressed as:
[tex]\omega[/tex](t)= 3.0 rads/s + (8.0 rad/s[tex]^{}2[/tex])t + (1.5 rad/s[tex]^{}4[/tex])t[tex]^{}3[/tex]. Calculate the torque on the wheel as a function of time. Assume that the moment of inertia is 500 kg*m[tex]^{}2[/tex] and is constant."
[tex]\tau[/tex]=Fr F=m[tex]\alpha[/tex] and I=mr[tex]^{}2[/tex]
I then said that [tex]\tau[/tex]=m[tex]\alpha[/tex]r. Next I set I=mr[tex]^{}2[/tex] equal to m and plugged it into [tex]\tau[/tex]=m[tex]\alpha[/tex]r.
I got [tex]\tau[/tex]=I[tex]\alpha[/tex]/r.
After that I differentiated the angular velocity and got [tex]\alpha[/tex](t)=8.0 + 3(1.5)t[tex]^{}2[/tex]. I plugged it in [tex]\tau[/tex]=I[tex]\alpha[/tex]/r and solved. My end result is: [tex]\tau[/tex](t)=2250t[tex]^{}2[/tex] + 4000[tex]/[/tex]r.
Is this correctly done?