- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :giggle:
Let \begin{equation*}A=\begin{pmatrix}0 & -2 & 2 & 0 & 0 & -6 \\ 0 & 0 & 0 & 1 & 1 & 3\\ 0 & 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & -1 & 0 & 2 & 7\\ 0 & 3 & -3 & 1 & 2 & 14\end{pmatrix}, \ b_1=\begin{pmatrix}0 \\ 0 \\ 0 \\ 0 \\ 0\end{pmatrix} , \ b_2=\begin{pmatrix}-2 \\ 1 \\ -1 \\ 3 \\ 5\end{pmatrix}, \ b_3=\begin{pmatrix}-2 \\ 2 \\ 0 \\ 4 \\ 7\end{pmatrix}\end{equation*}
(a) Determine the row echelon form of $A$.
(b) Calculate for all $1\leq i\leq 3$ with $L(A,b_i)\neq \emptyset$ a solution $x_i$.
(c) Give a basis of $L(A, 0_{\mathbb{R}^5})$.
(d) Give $L(A,b_i)$ for all $1\leq i\leq 3$ using the basis of (c).
For question (a) : At the matrix $A$ the first column contains only zeros. Can the echelon form contain only zeros at the first column? Or do we have to exchange the first column with an other one to get a non-zero element at the upper left position? :unsure:
Let \begin{equation*}A=\begin{pmatrix}0 & -2 & 2 & 0 & 0 & -6 \\ 0 & 0 & 0 & 1 & 1 & 3\\ 0 & 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & -1 & 0 & 2 & 7\\ 0 & 3 & -3 & 1 & 2 & 14\end{pmatrix}, \ b_1=\begin{pmatrix}0 \\ 0 \\ 0 \\ 0 \\ 0\end{pmatrix} , \ b_2=\begin{pmatrix}-2 \\ 1 \\ -1 \\ 3 \\ 5\end{pmatrix}, \ b_3=\begin{pmatrix}-2 \\ 2 \\ 0 \\ 4 \\ 7\end{pmatrix}\end{equation*}
(a) Determine the row echelon form of $A$.
(b) Calculate for all $1\leq i\leq 3$ with $L(A,b_i)\neq \emptyset$ a solution $x_i$.
(c) Give a basis of $L(A, 0_{\mathbb{R}^5})$.
(d) Give $L(A,b_i)$ for all $1\leq i\leq 3$ using the basis of (c).
For question (a) : At the matrix $A$ the first column contains only zeros. Can the echelon form contain only zeros at the first column? Or do we have to exchange the first column with an other one to get a non-zero element at the upper left position? :unsure: