MHB RSA Explained: Intro for Layman, Number Theory Basics

  • Thread starter Thread starter matqkks
  • Start date Start date
  • Tags Tags
    Layman
AI Thread Summary
The RSA algorithm encrypts numbers using a public key and decrypts them with a private key, relying on the difficulty of factoring the product of two large prime numbers, n = pq. The encryption process is represented as the encrypted number being equal to m raised to the power of the public key modulo n. Decryption reverses this process using the private key. Resources like Wikipedia provide a foundational understanding, detailing how to generate the public and private key pair from primes p and q. The discussion emphasizes the importance of modular arithmetic and suggests exploring the Chinese remainder theorem for further insight.
matqkks
Messages
280
Reaction score
5
I am looking for any resources which explain the RSA algorithm for the layman. I have found a number of sources but they all tend to end with a morass of technical details. This is for a first year undergraduate course in number theory who have covered some basic work on modular arithmetic.
 
Mathematics news on Phys.org
matqkks said:
I am looking for any resources which explain the RSA algorithm for the layman. I have found a number of sources but they all tend to end with a morass of technical details. This is for a first year undergraduate course in number theory who have covered some basic work on modular arithmetic.

Hi matqkks,

It seems to me the explanation here is about as simple as it gets.Long story short, we encrypt numbers $m$ with the public key as:
$$\text{encrypted number} = m^{\text{public key}} \bmod n$$
and we decrypt them with the private key:
$$m = \text{encrypted number}^{\text{private key}} \bmod n$$
where $n = pq$ is the product of 2 large prime numbers.The schema hinges on the fact that it's very difficult to find $p$ and $q$ given $n$.
The article explains how to get a $(\text{public key}, \text{private key})$ pair given $p$ and $q$.
It also means that anyone can encrypt a message, but only someone with access to the $\text{private key}$ can decrypt a message.
 
I agree completely with the previous post. You should read the Wikipedia article. Using the notation there, given an integer x, the encoded x is $x^e\text{ mod}(n)$ The decoding $f$ is such that $ef\equiv1\text{ mod}(\phi(n))$ Then for $x$ prime to $n$, $x^{ef}\equiv x\text{ mod}(n)$. However, it should still work for x's not prime to n. You might try your hand at this. Hint: the Chinese remainder theorem is helpful.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top