- #1
UberG
- 2
- 0
Hi,
I'm not a bright programmer , but I have to solve the fallowing equations:
##\frac{df}{dt} = \alpha f -\beta f + \theta g - (f+h)f##
##\frac{dg}{dt} = \psi f- \phi g##
##\frac{dh}{dt} = \xi f+ \mu h -\tau h + \epsilon w- (f+h)h##
##\frac{dw}{dt} = \nu h - \chi h##
Where ##f(t)## , ##g(t)## , ##h(t)## and ##w(t)## are only functions of ##t##. Every reference I read for Runge Kutta 4th order Method mentions a function with more than 1 variable (i.e http://www.phy.davidson.edu/FacHome/dmb/py200/RungeKuttaMethod.htm).
My question: how can I implement the Runge-Kutta 4th order method for solve theses equations?
(OBS: I'm familiar with C and Python)
Thanks in advance
I'm not a bright programmer , but I have to solve the fallowing equations:
##\frac{df}{dt} = \alpha f -\beta f + \theta g - (f+h)f##
##\frac{dg}{dt} = \psi f- \phi g##
##\frac{dh}{dt} = \xi f+ \mu h -\tau h + \epsilon w- (f+h)h##
##\frac{dw}{dt} = \nu h - \chi h##
Where ##f(t)## , ##g(t)## , ##h(t)## and ##w(t)## are only functions of ##t##. Every reference I read for Runge Kutta 4th order Method mentions a function with more than 1 variable (i.e http://www.phy.davidson.edu/FacHome/dmb/py200/RungeKuttaMethod.htm).
My question: how can I implement the Runge-Kutta 4th order method for solve theses equations?
(OBS: I'm familiar with C and Python)
Thanks in advance