- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
The following Runge-Kutta method is given:
$$\begin{vmatrix}
0 & 0 & | 0\\
\frac{1}{2} & \frac{1}{2} & | 1 \\ \\
\frac{1}{2} & \frac{1}{2}
\end{vmatrix} \\$$
and I want to show that its order of accuracy is $2$.
I have tried the following:
$$t^{n,1}=t^n \\ t^{n,2}=t^n+ \frac{h}{2} \\ \zeta^{n,1}=y(t^n) \\ \zeta^{n,2}=y(t^n)+ \frac{h}{2} f(t^n, y(t^n))$$
$$\delta^n=y(t^n+h f \left( t^n+ \frac{h}{2}, y(t^n)+ \frac{h}{2} f(t^n, y(t^n))\right))-y(t^n+h) \\ = -\frac{h}{2} f(t^n,y(t^n))+ \frac{h}{2} f(t^{n+1}, \zeta^{n,2})- \frac{h^2}{2} f_t(t^n,y(t^n))-\frac{h^2}{2} f_y(t^n, y(t^n)) f(t^n,y(t^n))+O(h^3)$$$$f(t^{n+1}, \zeta^{n,2})=f \left( t^n+h, y(t^n)+ \frac{h}{2} (f(t^n,y(t^n))+f(t^{n+1}, \zeta^{n,2})) \right)=f(t^n,y(t^n))+hf_t(t^n,y(t^n))+ \frac{h}{2} (f(t^n,y(t^n))+ f(t^{n+1}, \zeta^{n,2})) f_y(t^n, y(t^n))+O(h^2)$$
So we have:
$\delta^n=\frac{h^2}{4} f(t^{n+1}, \zeta^{n,2}) f_y(t^n,y(t^n))- \frac{h^2}{4} f_y(t^n,y(t^n)) f(t^n, y(t^n))+O(h^3)$
Is it right so far or have I done something wrong? (Thinking)
If it is right then it should hold $f(t^{n+1}, \zeta^{n,2}) f_y(t^n,y(t^n))= f_y(t^n,y(t^n)) f(t^n, y(t^n))$ so that we get $\delta^n=O(h^3)$. But does this hold? If so, how could we show this?
The following Runge-Kutta method is given:
$$\begin{vmatrix}
0 & 0 & | 0\\
\frac{1}{2} & \frac{1}{2} & | 1 \\ \\
\frac{1}{2} & \frac{1}{2}
\end{vmatrix} \\$$
and I want to show that its order of accuracy is $2$.
I have tried the following:
$$t^{n,1}=t^n \\ t^{n,2}=t^n+ \frac{h}{2} \\ \zeta^{n,1}=y(t^n) \\ \zeta^{n,2}=y(t^n)+ \frac{h}{2} f(t^n, y(t^n))$$
$$\delta^n=y(t^n+h f \left( t^n+ \frac{h}{2}, y(t^n)+ \frac{h}{2} f(t^n, y(t^n))\right))-y(t^n+h) \\ = -\frac{h}{2} f(t^n,y(t^n))+ \frac{h}{2} f(t^{n+1}, \zeta^{n,2})- \frac{h^2}{2} f_t(t^n,y(t^n))-\frac{h^2}{2} f_y(t^n, y(t^n)) f(t^n,y(t^n))+O(h^3)$$$$f(t^{n+1}, \zeta^{n,2})=f \left( t^n+h, y(t^n)+ \frac{h}{2} (f(t^n,y(t^n))+f(t^{n+1}, \zeta^{n,2})) \right)=f(t^n,y(t^n))+hf_t(t^n,y(t^n))+ \frac{h}{2} (f(t^n,y(t^n))+ f(t^{n+1}, \zeta^{n,2})) f_y(t^n, y(t^n))+O(h^2)$$
So we have:
$\delta^n=\frac{h^2}{4} f(t^{n+1}, \zeta^{n,2}) f_y(t^n,y(t^n))- \frac{h^2}{4} f_y(t^n,y(t^n)) f(t^n, y(t^n))+O(h^3)$
Is it right so far or have I done something wrong? (Thinking)
If it is right then it should hold $f(t^{n+1}, \zeta^{n,2}) f_y(t^n,y(t^n))= f_y(t^n,y(t^n)) f(t^n, y(t^n))$ so that we get $\delta^n=O(h^3)$. But does this hold? If so, how could we show this?