MHB Ryan's question at Yahoo Answers (Eigenvalues of A^*A)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
AI Thread Summary
All eigenvalues of the matrix A*A are proven to be nonnegative by showing that for any eigenvalue λ, it can be expressed as the ratio of the squared norm of Ax to the squared norm of x, which is always nonnegative. Additionally, the matrix A*A + I is shown to be invertible by demonstrating that if -1 were an eigenvalue of A*A, it would lead to a contradiction regarding the determinant. Thus, the determinant of A*A + I is non-zero, confirming its invertibility. This discussion provides a clear understanding of these linear algebra concepts. Further inquiries can be directed to the specified math help forum.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Let A be a mxn matrix. Prove that all eigenvalues of A*A are nonnegative and prove that A*A + I is invertible.

THANK YOU!

Here is a link to the question:

Linear Algebra Proof Help Please? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Ryan,

Suppose $\lambda$ is an eigenvalue of $A^*A\in \mathbb{C}^{n\times n}$ then, there exists $x=(x_1,\ldots,x_n)^T\in\mathbb{C}^n$ such that $A^*Ax=\lambda x$. Multypling both sides by $x^*=(\overline{x_1},\ldots,\overline{x_n})$ we get $$x^*A^*Ax=(Ax)^*(Ax)=\lambda x^*x$$ But $y=Ax=(y_1,\ldots,y_m)^T$ and $x\neq 0$ (i.e. $||x||\neq0$), so $$\lambda=\frac{y^*y}{x^*x}=\frac{||y||^2}{||x||^2}\ge 0$$ On the other hand, $$\det (A^*A+I)=0\Leftrightarrow \det (A^*A-(-1)I)=0\Leftrightarrow -1\mbox{ is eigenvalue of }A^*A$$ This is a contradiction, so $\det(A^*A+I)\neq0$, as a consequence $A^*A+I$ is invertible.

If you have further questions, you can post them in the http://www.mathhelpboards.com/f14/ section.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top