- #1
LagrangeEuler
- 717
- 22
For ##\hat{S}^+## and ##\hat{S}^{-}## operators for any given spin ##S## relation
[tex]\hat{S}^+|S,m \rangle=\sqrt{S(S+1)-m(m+1)}\hbar|S,m+1 \rangle [/tex]
[tex]\hat{S}^-|S,m \rangle=\sqrt{S(S+1)-m(m-1)}\hbar|S,m-1 \rangle [/tex]
Can someone please explain how we get those factors ##\sqrt{S(S+1)-m(m+1)}\hbar## and ##\sqrt{S(S+1)-m(m-1)}\hbar##?
In ##|S,m \rangle## ##S## denotes spin, and ##m## spin projection.
[tex]\hat{S}^+|S,m \rangle=\sqrt{S(S+1)-m(m+1)}\hbar|S,m+1 \rangle [/tex]
[tex]\hat{S}^-|S,m \rangle=\sqrt{S(S+1)-m(m-1)}\hbar|S,m-1 \rangle [/tex]
Can someone please explain how we get those factors ##\sqrt{S(S+1)-m(m+1)}\hbar## and ##\sqrt{S(S+1)-m(m-1)}\hbar##?
In ##|S,m \rangle## ##S## denotes spin, and ##m## spin projection.