MHB S.aux.26 our-sided die has three blue faces, and one red face.......

  • Thread starter Thread starter karush
  • Start date Start date
AI Thread Summary
The discussion revolves around a four-sided die with three blue faces and one red face, focusing on the probabilities associated with rolling the die. The probability of landing on a blue face is 3/4, while the probability of landing on a red face is 1/4. If a blue face lands down, the game ends with a score of 2; if a red face lands down, the player rolls again and can score either 2 or 3. The probability of scoring 3 is calculated as 3/16, while the probability of scoring 2 is 13/16. The expected value of the total score is determined to be 35/16, and the probabilities of winning in multiple games are also analyzed.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
four-sided die has three blue face, and one red face.
The die is rolled.
B be the event blue face lies down, and R be the event a red face lands down
a Write down
i $\quad P(B)=\dfrac{3}{4}\quad$ ii $\quad P(R)=\dfrac{1}{4}$

b If the blue face lands down, the dieu is not rolled again. If the red face lands down, the die is rolled once again.
This is represented by the following tree diagram, where p, s, t are probabilities.

276.png


Find the value of p, of s and of t.

c Guiseppi plays a game where he rolls the die.
If a blue face lands down, he scores 2 and is finished.
If the red face lands down, he scores 1 and rolls one more time.
Let X be the total score obtained.
$ \quad \texit{
Show that } $P(X=3)=\frac{3}{16}$
[ii] Find $\quad P(X=2)$

[d i] Construct a probability distribution table for X. [5 marks]
[ii] Calculate the expected value of X.

[e] If the total score is 3, Guiseppi wins . If the total score is 2, Guiseppi gets nothing.
Guiseppi plays the game twice. Find the probability that he wins exactly .

ok I only time to do the first question so hope going in right direction
I know the answers to all this is quickly found online but I don't learn too well by C/P
 
Last edited:
Mathematics news on Phys.org
a) Yes, the probability of Blue on one roll is 3/4 and the probability if Red is 1/4.

b) On the diagram, p is obviously 3/4. q is (1/4)(3/4)= 3/16. r is (1/4)(1/4)= 1/16.
(Note that 3/4+ 3/16+ 1/16= 1.)

c) The probability of Blue is 3/4 and gives a value 2, The probability of Red, Blue is 3/16 and gives a value 1+ 2= 3. The probability of Red, Red is 1/16 and gives a value 1+ 1= 2. So P(X= 2) is 3/4+ 1/16= 12/16+ 1/16= 13/16. P(X= 3) is 3/16.

di) Since 2 and 3 are the only possible values for X, P(X= 2)= 13/16, P(X= 3)= 3/16 IS the "probability distribution table" for X. (And of course 13/16+ 3/16= 16/16= 1.)

dii) The expected value is (3/4)(2)+ (3/16)(3)+ (1/16)(2)= 24/16+ 9/16+ 2/16= 35/16= 2 and 3/16.

e) The probability Giussepe loses both games is (13/16)(13/16)= 169/256. The probability Giussepe wins one game and losess the other is (13/16)(3/16)+ (3/16)(13/16)= 78/256. The probability Giussepe wins both games is (3/16)(3/16)= 9/256. (Once again, observe that 169/256+ 78/256+ 9/256= 256/256= 1.)
 
Last edited:
Mahalo
that was a great help
ill try the next one all the way thru
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top