- #1
karush
Gold Member
MHB
- 3,269
- 5
1000
$\textsf{Consider the differential equation
$\displaystyle \frac{dy}{dt}=ay-b$}$
(a) Find the equilibrium solution $y_e$
rewrite as
$y'-ay=b$
$\displaystyle -\exp\int a \, da=e^{a^{2}/2}$
$\color{red}{y_e=b/a}$
(b) Let $Y(t)=y-y_e$; thus $Y(t)$ is the deviation from the equilibrium solution.
Find the differential equation satisfied by $Y(t)$.
?
$\color{red}{Y' = aY}$
ok stopped in my tracks.. red is book answer
$\textsf{Consider the differential equation
$\displaystyle \frac{dy}{dt}=ay-b$}$
(a) Find the equilibrium solution $y_e$
rewrite as
$y'-ay=b$
$\displaystyle -\exp\int a \, da=e^{a^{2}/2}$
$\color{red}{y_e=b/a}$
(b) Let $Y(t)=y-y_e$; thus $Y(t)$ is the deviation from the equilibrium solution.
Find the differential equation satisfied by $Y(t)$.
?
$\color{red}{Y' = aY}$
ok stopped in my tracks.. red is book answer
Last edited: