MHB S3 Group Symmetry: $(xy)^2 \ne x^2y^2$ Example

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Group Symmetric
Click For Summary
In the discussion on S3 group symmetry, an example is provided to demonstrate that for elements x and y in S3, the equation (xy)^2 ≠ x^2y^2 holds. The mappings φ and ψ are defined, with φ swapping x1 and x2 while keeping x3 fixed, and ψ cycling x1 to x2, x2 to x3, and x3 to x1. It is shown that (φψ)^2 results in a different mapping than φ^2ψ^2, confirming the inequality. The importance of using cycle notation for clarity in such problems is also emphasized. This example effectively illustrates the non-commutative nature of the group S3.
Guest2
Messages
192
Reaction score
0
Problem: In $S_3$ give an example of two elements $x$ and $y$ such that $(xy)^2 \ne x^2y^2$.

Attempt: Consider the mapping $\phi: x_1 \mapsto x_2, x_2 \mapsto x_1, x_3 \mapsto x_3$ and the mapping $\psi: x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1$. We have that the elements $\phi, \psi \in S_3$. We also have $x_1 (\phi \psi)^2 = x_1\phi \psi \phi \psi = x_3 \phi \psi = x_1.$ We also have that $\phi^2 = e$ and thus $ x_1 \phi^2 \psi^2 = x_1 \psi^2 = x_2 \psi = x_3$. Therefore $(\phi \psi)^2 \ne \phi^2 \psi^2$. Hence it's enough to take $x = \phi$ and $y = \psi$.

Is the above any good?
 
Last edited:
Physics news on Phys.org
Guest said:
Problem: In $S_3$ give an example of two elements $x$ and $y$ such that $(xy)^2 \ne x^2y^2$.

Attempt: Consider the mapping $\phi: x_1 \mapsto x_2, x_2 \mapsto x_1, x_3 \mapsto x_3$ and the mapping $\psi: x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1$. We have that the elements $\phi, \psi \in S_3$. We also have $x_1 (\phi \psi)^2 = x_1\phi \psi \phi \psi = x_3 \phi \psi = x_1.$ We also have that $\phi^2 = e$ and thus $ x_1 \phi^2 \psi^2 = x_1 \psi^2 = x_2 \psi = x_3$. Therefore $(\phi \psi)^2 \ne \phi^2 \psi^2$. Hence it's enough to take $x = \phi$ and $y = \psi$.

Is the above any good?

That looks good, although you should make it explicit that $\phi\psi$ is the mapping:

$x_1 \mapsto x_3$
$x_2 \mapsto x_2$
$x_3 \mapsto x_1$.

When you learn cycle notation, these kinds of problems will be much easier to write about.

(and yes, to show that two mappings $f,g:A \to B$ are unequal, it is enough to exhibit a single $a \in A$ such that $(a)f \neq (a)g$...in this case we have $A = B = \{x_1,x_2,x_3\}$).
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 0 ·
Replies
0
Views
832
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 26 ·
Replies
26
Views
845
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K