- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{s6.793.12.4.33}$
$\textsf{
Find the volume of the parallelepiped determined by the vectors, a b and c}$
$ a =\langle 6, 3, -1\rangle
\, b =\langle 0, 1, 2 \rangle
\, c =\langle 4, -2, 5 \rangle $
$\textsf{The volumn of the parallelepiped determined by the vectors }\\$
$\textsf{ $a, b$ and $c$ is the magnitude of their scalar triple product.}$
\begin{align}
\displaystyle
V&=|a \cdot(b \times c)|\\
\end{align}
then
\begin{align}
V=|a \cdot(b \times c)|&=
\begin{bmatrix}
6 & 3 & -1\\
0 &1 &2\\
4 &-2 &5
\end{bmatrix} \\
&=6\begin{bmatrix}=
1 &2\\
-2 &5
\end{bmatrix}
+3\begin{bmatrix}
0 &2\\
4 &5
\end{bmatrix}
-\begin{bmatrix}
0 &1\\
4 &-2
\end{bmatrix}\\
&= 6(9)-3(-8) +(4) \\
&\color{red}{V=82}
\end{align}
$\textit{ok think this is ok. but always suggestions! }\\$
$\textit{btw need more lines to expand to in latex window scrolling constantly not fun}$
$\textsf{
Find the volume of the parallelepiped determined by the vectors, a b and c}$
$ a =\langle 6, 3, -1\rangle
\, b =\langle 0, 1, 2 \rangle
\, c =\langle 4, -2, 5 \rangle $
$\textsf{The volumn of the parallelepiped determined by the vectors }\\$
$\textsf{ $a, b$ and $c$ is the magnitude of their scalar triple product.}$
\begin{align}
\displaystyle
V&=|a \cdot(b \times c)|\\
\end{align}
then
\begin{align}
V=|a \cdot(b \times c)|&=
\begin{bmatrix}
6 & 3 & -1\\
0 &1 &2\\
4 &-2 &5
\end{bmatrix} \\
&=6\begin{bmatrix}=
1 &2\\
-2 &5
\end{bmatrix}
+3\begin{bmatrix}
0 &2\\
4 &5
\end{bmatrix}
-\begin{bmatrix}
0 &1\\
4 &-2
\end{bmatrix}\\
&= 6(9)-3(-8) +(4) \\
&\color{red}{V=82}
\end{align}
$\textit{ok think this is ok. but always suggestions! }\\$
$\textit{btw need more lines to expand to in latex window scrolling constantly not fun}$
Last edited: