- #1
omoplata
- 327
- 2
From 'Modern Quantum Mechanics, revised edition' by J.J. Sakurai,
In page 44 the translation (spacial displacement) operator [itex]\mathcal{T}(d \boldsymbol{x'})[/itex] is introduced.
[tex]\mathcal{T}(d \boldsymbol{x'}) \mid \boldsymbol{x'} \rangle = \mid \boldsymbol{x'} + d \boldsymbol{x'} \rangle[/tex]
It is shown that the translation operator must be unitary and that two successive translations must be the same as one single translation to the same effect.
[tex]\mathcal{T}^{\dagger} ( d \boldsymbol{x'} ) \mathcal{T} ( d \boldsymbol{x'} ) = 1[/tex]
[tex]\mathcal{T} ( d \boldsymbol{x''} ) \mathcal{T} ( d \boldsymbol{x'} ) = \mathcal{T} ( d \boldsymbol{x'} + d \boldsymbol{x''} )[/tex]
Two other properties are also stated, but they don't pertain to my question.
Then it is demonstrated that if we assume,[tex]\mathcal{T} ( d \boldsymbol{x'} ) = 1 - i \mathbf{K} \cdot d \boldsymbol{x'} [/tex], these properties are satisfied. But when showing proof, second order and above terms of [itex]d \boldsymbol{x'}[/itex] are ignored.
For example, in the proof that unitarity is satisfied,
[tex] \begin{eqnarray} \mathcal{T}^{\dagger} (d \boldsymbol{x'} ) \mathcal{T} ( d \boldsymbol{x'} ) & = & (1 + i \mathbf{K}^{\dagger} \cdot d \boldsymbol{x'} ) ( 1 - i \mathbf{K} \cdot d \boldsymbol{x'} ) \\
& = & 1 - i ( \mathbf{K} - \mathbf{K}^{\dagger} ) \cdot d \boldsymbol{x'} + 0 \left[ ( d \boldsymbol{x'} )^{2} \right] \\
& \approx & 1 \end{eqnarray} [/tex]
Here the second order terms of [itex]d \boldsymbol{x'}[/itex] are ignored. Thus the 0 in the second line.
In the proof for the second property,
[tex] \begin{eqnarray} \mathcal{T} (d \boldsymbol{x''} ) \mathcal{T} ( d \boldsymbol{x'} ) & = & (1 - i \mathbf{K} \cdot d \boldsymbol{x''} ) ( 1 - i \mathbf{K} \cdot d \boldsymbol{x'} ) \\
& \approx & 1 - i \mathbf{K} \cdot ( d \boldsymbol{x''} + d \boldsymbol{x'} ) \\
& = & \mathcal{T} ( d \boldsymbol{x'} + d \boldsymbol{x''} ) \end{eqnarray} [/tex]
In the second line, the second order terms of [itex]d \boldsymbol{x}[/itex] are ignored.
This is only the beginning. In numerous times later in the book, when constructing infinitesimal operators, second and higher order terms are ignored after a Taylor expansion.
Since such methods are used in the construction of Quantum theory, does this mean that the whole of Quantum Mechanics is an approximation?
In page 44 the translation (spacial displacement) operator [itex]\mathcal{T}(d \boldsymbol{x'})[/itex] is introduced.
[tex]\mathcal{T}(d \boldsymbol{x'}) \mid \boldsymbol{x'} \rangle = \mid \boldsymbol{x'} + d \boldsymbol{x'} \rangle[/tex]
It is shown that the translation operator must be unitary and that two successive translations must be the same as one single translation to the same effect.
[tex]\mathcal{T}^{\dagger} ( d \boldsymbol{x'} ) \mathcal{T} ( d \boldsymbol{x'} ) = 1[/tex]
[tex]\mathcal{T} ( d \boldsymbol{x''} ) \mathcal{T} ( d \boldsymbol{x'} ) = \mathcal{T} ( d \boldsymbol{x'} + d \boldsymbol{x''} )[/tex]
Two other properties are also stated, but they don't pertain to my question.
Then it is demonstrated that if we assume,[tex]\mathcal{T} ( d \boldsymbol{x'} ) = 1 - i \mathbf{K} \cdot d \boldsymbol{x'} [/tex], these properties are satisfied. But when showing proof, second order and above terms of [itex]d \boldsymbol{x'}[/itex] are ignored.
For example, in the proof that unitarity is satisfied,
[tex] \begin{eqnarray} \mathcal{T}^{\dagger} (d \boldsymbol{x'} ) \mathcal{T} ( d \boldsymbol{x'} ) & = & (1 + i \mathbf{K}^{\dagger} \cdot d \boldsymbol{x'} ) ( 1 - i \mathbf{K} \cdot d \boldsymbol{x'} ) \\
& = & 1 - i ( \mathbf{K} - \mathbf{K}^{\dagger} ) \cdot d \boldsymbol{x'} + 0 \left[ ( d \boldsymbol{x'} )^{2} \right] \\
& \approx & 1 \end{eqnarray} [/tex]
Here the second order terms of [itex]d \boldsymbol{x'}[/itex] are ignored. Thus the 0 in the second line.
In the proof for the second property,
[tex] \begin{eqnarray} \mathcal{T} (d \boldsymbol{x''} ) \mathcal{T} ( d \boldsymbol{x'} ) & = & (1 - i \mathbf{K} \cdot d \boldsymbol{x''} ) ( 1 - i \mathbf{K} \cdot d \boldsymbol{x'} ) \\
& \approx & 1 - i \mathbf{K} \cdot ( d \boldsymbol{x''} + d \boldsymbol{x'} ) \\
& = & \mathcal{T} ( d \boldsymbol{x'} + d \boldsymbol{x''} ) \end{eqnarray} [/tex]
In the second line, the second order terms of [itex]d \boldsymbol{x}[/itex] are ignored.
This is only the beginning. In numerous times later in the book, when constructing infinitesimal operators, second and higher order terms are ignored after a Taylor expansion.
Since such methods are used in the construction of Quantum theory, does this mean that the whole of Quantum Mechanics is an approximation?