- #1
omoplata
- 327
- 2
From page 54 of 'Modern Quantum Mechanics, revised edition" by J. J. Sakurai.
Obtaining equation (1.7.15),[tex]
\begin{eqnarray}
\left(1- \frac{ip\Delta x'}{\hbar} \right) \mid \alpha \rangle & = & \int dx' \mathcal{T} ( \Delta x' ) \mid x' \rangle \langle x' \mid \alpha \rangle \\
& = & \int dx' \mid x' + \Delta x' \rangle \langle x' \mid \alpha \rangle \\
& = & \int dx' \mid x' \rangle \langle x' - \Delta x' \mid \alpha \rangle \\
& = & \int dx' \mid x' \rangle \left( \langle x' \mid \alpha \rangle - \Delta x' \frac{\partial}{\partial x'} \langle x' \mid \alpha \rangle \right)
\end{eqnarray}
[/tex]How does the last line come about? Is it a Taylor expansion?
Obtaining equation (1.7.15),[tex]
\begin{eqnarray}
\left(1- \frac{ip\Delta x'}{\hbar} \right) \mid \alpha \rangle & = & \int dx' \mathcal{T} ( \Delta x' ) \mid x' \rangle \langle x' \mid \alpha \rangle \\
& = & \int dx' \mid x' + \Delta x' \rangle \langle x' \mid \alpha \rangle \\
& = & \int dx' \mid x' \rangle \langle x' - \Delta x' \mid \alpha \rangle \\
& = & \int dx' \mid x' \rangle \left( \langle x' \mid \alpha \rangle - \Delta x' \frac{\partial}{\partial x'} \langle x' \mid \alpha \rangle \right)
\end{eqnarray}
[/tex]How does the last line come about? Is it a Taylor expansion?