- #1
omoplata
- 327
- 2
From page 91 of "Modern Quantum Mechanics, revised edition", by J. J. Sakurai.
Some operators used below are,
[tex]
a = \sqrt{\frac{m \omega}{2 \hbar}} \left(x + \frac{ip}{m \omega} \right)\\
a^{\dagger} = \sqrt{\frac{m \omega}{2 \hbar}} \left(x - \frac{ip}{m \omega} \right)\\
N = a^{\dagger} a
[/tex]
In equation (2.3.16), he finds
[tex]
a \mid n \rangle = \sqrt{n} \mid n - 1 \rangle
[/tex]
Next he says it's similarly easy to show equation (2.3.17),
[tex]
a^{\dagger} \mid n \rangle = \sqrt{n+1} \mid n + 1 \rangle
[/tex]
I didn't find it to be so easy. Following the same procedure as equation (2.3.16), since from equation (2.3.12a),
[tex]
Na^{\dagger} \mid n \rangle = (n+1) a ^{\dagger} \mid n \rangle
[/tex], I took
[tex]
a^{\dagger} \mid n \rangle = c \mid n + 1 \rangle
[/tex], where [itex]c[/itex] is some constant. Then,
[tex]
\langle n \mid a a^{\dagger} \mid n \rangle = | c |^2
[/tex]
To find [itex]a^{\dagger} a[/itex],
[tex]
\begin{eqnarray}
a a^{\dagger}
& = & \left( \frac{m \omega}{2 \hbar} \right) \left( x + \frac{ip}{m \omega} \right) \left( x - \frac{ip}{m \omega} \right)\\
& = & \frac{H}{\hbar \omega} + \frac{1}{2}\\
\end{eqnarray}
[/tex]
Since it is proven in equation (2.3.5) and (2.3.6) that [itex]H = \hbar \omega (N + \frac{1}{2})[/itex], I get,
[tex]
a a^{\dagger} = N + 1
[/tex]
Then,
[tex]
\langle n \mid a a^{\dagger} \mid n \rangle = \langle n \mid N + 1 \mid n \rangle = n + 1
[/tex]
Therefore, from above,
[tex]
c = \sqrt{n+1}
[/tex], which gives,
[tex]
a^{\dagger} \mid n \rangle = \sqrt{n+1} \mid n + 1 \rangle
[/tex], which is the desired result.
But is there an easier way to get this?
At the same time,
[tex]
a a^{\dagger} = N^{\dagger}
[/tex]
So,
[tex]
\langle n \mid a a^{\dagger} \mid n \rangle = \langle n \mid N^{\dagger} \mid n \rangle = n^{*}
[/tex]
Therefore,
[tex]
n+1 = n^{*}
[/tex]
How can this happen? I can't see this happening unless the real component of [itex]n[/itex] tends to be infinity.
Some operators used below are,
[tex]
a = \sqrt{\frac{m \omega}{2 \hbar}} \left(x + \frac{ip}{m \omega} \right)\\
a^{\dagger} = \sqrt{\frac{m \omega}{2 \hbar}} \left(x - \frac{ip}{m \omega} \right)\\
N = a^{\dagger} a
[/tex]
In equation (2.3.16), he finds
[tex]
a \mid n \rangle = \sqrt{n} \mid n - 1 \rangle
[/tex]
Next he says it's similarly easy to show equation (2.3.17),
[tex]
a^{\dagger} \mid n \rangle = \sqrt{n+1} \mid n + 1 \rangle
[/tex]
I didn't find it to be so easy. Following the same procedure as equation (2.3.16), since from equation (2.3.12a),
[tex]
Na^{\dagger} \mid n \rangle = (n+1) a ^{\dagger} \mid n \rangle
[/tex], I took
[tex]
a^{\dagger} \mid n \rangle = c \mid n + 1 \rangle
[/tex], where [itex]c[/itex] is some constant. Then,
[tex]
\langle n \mid a a^{\dagger} \mid n \rangle = | c |^2
[/tex]
To find [itex]a^{\dagger} a[/itex],
[tex]
\begin{eqnarray}
a a^{\dagger}
& = & \left( \frac{m \omega}{2 \hbar} \right) \left( x + \frac{ip}{m \omega} \right) \left( x - \frac{ip}{m \omega} \right)\\
& = & \frac{H}{\hbar \omega} + \frac{1}{2}\\
\end{eqnarray}
[/tex]
Since it is proven in equation (2.3.5) and (2.3.6) that [itex]H = \hbar \omega (N + \frac{1}{2})[/itex], I get,
[tex]
a a^{\dagger} = N + 1
[/tex]
Then,
[tex]
\langle n \mid a a^{\dagger} \mid n \rangle = \langle n \mid N + 1 \mid n \rangle = n + 1
[/tex]
Therefore, from above,
[tex]
c = \sqrt{n+1}
[/tex], which gives,
[tex]
a^{\dagger} \mid n \rangle = \sqrt{n+1} \mid n + 1 \rangle
[/tex], which is the desired result.
But is there an easier way to get this?
At the same time,
[tex]
a a^{\dagger} = N^{\dagger}
[/tex]
So,
[tex]
\langle n \mid a a^{\dagger} \mid n \rangle = \langle n \mid N^{\dagger} \mid n \rangle = n^{*}
[/tex]
Therefore,
[tex]
n+1 = n^{*}
[/tex]
How can this happen? I can't see this happening unless the real component of [itex]n[/itex] tends to be infinity.
Last edited: