- #1
- 1,802
- 1,200
- TL;DR Summary
- Investigating the force law in particle physics: The Lorentz 4-force and the Higgs force.
To get you started I will derive the Lorentz force law from the QED Lagrangian [tex]\begin{equation}\mathcal{L} = \frac{i}{2} \bar{\psi}\gamma^{\mu}D_{\mu}\psi + h.c - \frac{1}{16\pi}F_{\mu\nu}F^{\mu\nu} ,\end{equation}[/tex][tex]D_{\mu} = \partial_{\mu} + ieA_{\mu},[/tex] and then, I let you do the same to a SM-like theory, i.e., an [itex]\mbox{SU}(N)[/itex] gauge invariant theory of fermionic fields coupled to the Higgs field, both belonging to the fundamental representation of [itex]\mbox{SU}(N)[/itex]: [tex]\begin{align}\mathcal{L} & = \frac{i}{2} \bar{\psi}\gamma^{\mu}D_{\mu}\psi - \frac{1}{16\pi}F^{a}_{\mu\nu}F^{\mu\nu}_{a} + \frac{1}{2}\left(D_{\mu}\phi \right)^{\dagger}D^{\mu}\phi \\ & - \frac{\mu^{2}}{2} \phi^{\dagger}\phi - \frac{\lambda}{4!}\left(\phi^{\dagger} \phi \right)^{2} \\ & - \bar{\psi} \phi^{\dagger}\mathbf{m} \psi + hc ,\end{align}[/tex][tex]D_{\mu} = \partial_{\mu} + igA^{a}_{\mu}t_{a}.[/tex] Here [itex]\mu^{2}, \ \lambda[/itex] are real parameters of the Higgs potential, and [itex]\mathbf{m}[/itex] is the Yukawa coupling-matrix. Of course, in the SM one has to specify explicitly the generators [itex]t_{a}[/itex], the fermion fields [itex]\psi[/itex], the Higgs field [itex]\phi[/itex], and the coupling matrix [itex]\mathbf{m}[/itex] which determines the fermion mass eignstates after the spontaneous symmetry breaking.
The Lorentz Force Law from the QED Lagrangian:
From (1) we get the field equations for the fermionic matter field [itex]\psi[/itex]:
[tex]\begin{equation} i\gamma^{\mu}D_{\mu}\psi = 0 , \end{equation}[/tex] and the EM gauge field [itex]F^{\mu\nu}[/itex]
[tex]\begin{equation}\partial_{\mu}F^{\mu\nu} = 4\pi j^{\nu}, \end{equation}[/tex] with the gauge-invariant matter-field current [tex]\begin{equation}j^{\mu} = e \bar{\psi} \gamma^{\mu} \psi .\end{equation}[/tex] The conserved and gauge-invariant energy-momentum tensor in QED has a gauge-invariant matter-field and electromagnetic-field part [tex]T^{\mu}{}_{\nu} = T^{\mu}{}_{\nu}(\psi) - T^{\mu}{}_{\nu}(F),[/tex] where [tex]\begin{equation}T^{\mu}{}_{\nu}(\psi) = \frac{i}{2}\left(\bar{\psi}\gamma^{\mu}D_{\nu}\psi - \overline{( D_{\nu}\psi )}\gamma^{\mu}\psi \right), \end{equation}[/tex][tex]\begin{equation}T^{\mu}{}_{\nu}(F) = \frac{1}{4\pi}\left( F^{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta^{\mu}_{\nu} F^{2}\right) . \end{equation}[/tex] From [itex]\partial_{\mu}T^{\mu\nu} = 0[/itex], one gets, neglecting surface integral at infinity: [tex]\begin{equation}\frac{d}{dt} \int d^{3}x \ T^{0}{}_{\nu}(\psi) = \int d^{3}x \ \partial_{\mu}T^{\mu}{}_{\nu}(F) .\end{equation}[/tex] Notice that on the LHS we have the rate of change of the 4-momentum [itex]P_{\nu}(\psi)[/itex] of the matter field. Now, using the field equation [itex]\partial_{\mu}F^{\mu\nu} = 4\pi j^{\nu}[/itex], one can easily show [tex]\begin{equation}\partial_{\mu}T^{\mu}{}_{\nu}(F) = F_{\nu\sigma}j^{\sigma} . \end{equation}[/tex] Substituting this in (10), we find [tex]\begin{equation} \frac{d}{dt}P_{\mu}(\psi) = \int d^{3}x \ F_{\mu \sigma}j^{\sigma} . \end{equation}[/tex] The RHS represents the Lorentz 4-force which causes the change of the 4-momentum of the matter field with time.
Your exercise: Apply the above reasoning to the [itex]\mbox{SU}(N)[/itex] Lagrangian of eq(2) and show that [tex]\begin{equation}\frac{d}{dt}P_{\mu}(\psi) = \int d^{3}x \ F_{\mu\nu}^{a}j^{\nu}_{a}(\psi) + \int d^{3}x \ \bar{\psi} \left((D_{\mu}\phi)^{\dagger}\mathbf{m} + \mathbf{m}^{\dagger}(D_{\mu}\phi) \right)\psi , \end{equation}[/tex] where [itex]j^{\nu}_{a}(\psi) = g\bar{\psi}\gamma^{\nu}t_{a}\psi[/itex] is the fermionic matter field current. The two integrals on the RHS of (13) represent the Lorentz-like 4-force of the gauge-field and the Higgs-field force respectively. Clearly, the gauge field couples to the matter-field via the [itex]\mbox{SU}(N)[/itex] coupling constant [itex]g[/itex], whereas the coupling strength of the Higgs-field to the fermions is determined only by the (fermionic) mass matrix [itex]\mathbf{m}[/itex]. This fact seems to point to a gravitational role for the Higgs field on the microscopic level !
The Lorentz Force Law from the QED Lagrangian:
From (1) we get the field equations for the fermionic matter field [itex]\psi[/itex]:
[tex]\begin{equation} i\gamma^{\mu}D_{\mu}\psi = 0 , \end{equation}[/tex] and the EM gauge field [itex]F^{\mu\nu}[/itex]
[tex]\begin{equation}\partial_{\mu}F^{\mu\nu} = 4\pi j^{\nu}, \end{equation}[/tex] with the gauge-invariant matter-field current [tex]\begin{equation}j^{\mu} = e \bar{\psi} \gamma^{\mu} \psi .\end{equation}[/tex] The conserved and gauge-invariant energy-momentum tensor in QED has a gauge-invariant matter-field and electromagnetic-field part [tex]T^{\mu}{}_{\nu} = T^{\mu}{}_{\nu}(\psi) - T^{\mu}{}_{\nu}(F),[/tex] where [tex]\begin{equation}T^{\mu}{}_{\nu}(\psi) = \frac{i}{2}\left(\bar{\psi}\gamma^{\mu}D_{\nu}\psi - \overline{( D_{\nu}\psi )}\gamma^{\mu}\psi \right), \end{equation}[/tex][tex]\begin{equation}T^{\mu}{}_{\nu}(F) = \frac{1}{4\pi}\left( F^{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta^{\mu}_{\nu} F^{2}\right) . \end{equation}[/tex] From [itex]\partial_{\mu}T^{\mu\nu} = 0[/itex], one gets, neglecting surface integral at infinity: [tex]\begin{equation}\frac{d}{dt} \int d^{3}x \ T^{0}{}_{\nu}(\psi) = \int d^{3}x \ \partial_{\mu}T^{\mu}{}_{\nu}(F) .\end{equation}[/tex] Notice that on the LHS we have the rate of change of the 4-momentum [itex]P_{\nu}(\psi)[/itex] of the matter field. Now, using the field equation [itex]\partial_{\mu}F^{\mu\nu} = 4\pi j^{\nu}[/itex], one can easily show [tex]\begin{equation}\partial_{\mu}T^{\mu}{}_{\nu}(F) = F_{\nu\sigma}j^{\sigma} . \end{equation}[/tex] Substituting this in (10), we find [tex]\begin{equation} \frac{d}{dt}P_{\mu}(\psi) = \int d^{3}x \ F_{\mu \sigma}j^{\sigma} . \end{equation}[/tex] The RHS represents the Lorentz 4-force which causes the change of the 4-momentum of the matter field with time.
Your exercise: Apply the above reasoning to the [itex]\mbox{SU}(N)[/itex] Lagrangian of eq(2) and show that [tex]\begin{equation}\frac{d}{dt}P_{\mu}(\psi) = \int d^{3}x \ F_{\mu\nu}^{a}j^{\nu}_{a}(\psi) + \int d^{3}x \ \bar{\psi} \left((D_{\mu}\phi)^{\dagger}\mathbf{m} + \mathbf{m}^{\dagger}(D_{\mu}\phi) \right)\psi , \end{equation}[/tex] where [itex]j^{\nu}_{a}(\psi) = g\bar{\psi}\gamma^{\nu}t_{a}\psi[/itex] is the fermionic matter field current. The two integrals on the RHS of (13) represent the Lorentz-like 4-force of the gauge-field and the Higgs-field force respectively. Clearly, the gauge field couples to the matter-field via the [itex]\mbox{SU}(N)[/itex] coupling constant [itex]g[/itex], whereas the coupling strength of the Higgs-field to the fermions is determined only by the (fermionic) mass matrix [itex]\mathbf{m}[/itex]. This fact seems to point to a gravitational role for the Higgs field on the microscopic level !
Last edited: