MHB Sameer's derivative problem via Facebook

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Derivative
AI Thread Summary
The discussion focuses on determining the values of k for the curve defined by the equation y = (5/3)x + kx^2 - (8/9)x^3, such that the tangents at x = 1 and x = -1/2 are perpendicular. The gradients at these points are calculated using the derivative, resulting in expressions 2k - 1 and 1 - k, respectively. For the tangents to be perpendicular, the product of these gradients must equal -1, leading to the equation (2k - 1)(1 - k) = -1. Solving this equation yields k = 0 or k = 3/2 as the possible values. Verification through tangent equations confirms the correctness of these solutions.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
For the curve with equation $\displaystyle \begin{align*} y = \frac{5}{3}\,x + k\,x^2 - \frac{8}{9}\,x^3 \end{align*}$, calculate the possible values of $\displaystyle \begin{align*} k \end{align*}$ such that the tangents at the points where $\displaystyle \begin{align*} x = 1 \end{align*}$ and $\displaystyle \begin{align*} x = -\frac{1}{2} \end{align*}$ are perpendicular

We first need to remember that two lines are perpendicular when their gradients multiply to give -1.

Now, the gradients of the tangents at the points where $\displaystyle \begin{align*} x = 1 \end{align*}$ and $\displaystyle \begin{align*} x = -\frac{1}{2} \end{align*}$ can be found by evaluating the derivative at those points.

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{5}{3} + 2\,k \,x - \frac{8}{3}\,x^2 \\ \\ \frac{\mathrm{d}y}{\mathrm{d}x} | _{x = 1} &= \frac{5}{3} + 2\,k \cdot 1 - \frac{8}{3} \cdot 1^2 \\ &= 2\,k - 1 \\ \\ \frac{\mathrm{d}y}{\mathrm{d}x} |_{x = -\frac{1}{2}} &= \frac{5}{3} + 2\,k \cdot \left( -\frac{1}{2} \right) - \frac{8}{3} \cdot \left( -\frac{1}{2} \right) ^2 \\ &= 1 - k \end{align*}$

Now for the two tangents to be perpendicular, these gradients must multiply to -1...

$\displaystyle \begin{align*} \left( 2\,k - 1 \right) \left( 1 - k \right) &= -1 \\ 2\,k - 2\,k^2 - 1 + k &= -1 \\ 3\,k - 2\,k^2 &= 0 \\ k \left( 3 - 2\,k \right) &= 0 \\ k = 0 \textrm{ or } k &= \frac{3}{2} \end{align*}$
 

Attachments

  • derivative.jpg
    derivative.jpg
    24.6 KB · Views: 138
Mathematics news on Phys.org
Prove It said:
We first need to remember that two lines are perpendicular when their gradients multiply to give -1.

Now, the gradients of the tangents at the points where $\displaystyle \begin{align*} x = 1 \end{align*}$ and $\displaystyle \begin{align*} x = -\frac{1}{2} \end{align*}$ can be found by evaluating the derivative at those points.

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{5}{3} + 2\,k \,x - \frac{8}{3}\,x^2 \\ \\ \frac{\mathrm{d}y}{\mathrm{d}x} | _{x = 1} &= \frac{5}{3} + 2\,k \cdot 1 - \frac{8}{3} \cdot 1^2 \\ &= 2\,k - 1 \\ \\ \frac{\mathrm{d}y}{\mathrm{d}x} |_{x = -\frac{1}{2}} &= \frac{5}{3} + 2\,k \cdot \left( -\frac{1}{2} \right) - \frac{8}{3} \cdot \left( -\frac{1}{2} \right) ^2 \\ &= 1 - k \end{align*}$

Now for the two tangents to be perpendicular, these gradients must multiply to -1...

$\displaystyle \begin{align*} \left( 2\,k - 1 \right) \left( 1 - k \right) &= -1 \\ 2\,k - 2\,k^2 - 1 + k &= -1 \\ 3\,k - 2\,k^2 &= 0 \\ k \left( 3 - 2\,k \right) &= 0 \\ k = 0 \textrm{ or } k &= \frac{3}{2} \end{align*}$
This is correct! One can also verify by finding the equations of the tangent. For instance, when ##k=0## then our tangent equations would be, ##y=x-0.222## and ##y=-x+1.778## that coincide with each other at ##90^0##. Similarly this can be done for ##k=\dfrac{3}{2}##.
 
  • Like
Likes Greg Bernhardt
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
4
Views
11K
Replies
4
Views
11K
Replies
1
Views
11K
Replies
1
Views
6K
Replies
2
Views
10K
Replies
2
Views
2K
Back
Top