MHB Sammy's question at Yahoo Answers (Laurent expansion)

AI Thread Summary
The discussion focuses on finding the Laurent series for the function cos(z)/z centered at z=0. The Maclaurin series for cos(z) is provided, which is the basis for deriving the Laurent series. The resulting Laurent series for cos(z)/z is expressed as a sum that includes a term 1/z and an infinite series. Participants are encouraged to ask further questions in a designated math help forum. This response aims to clarify the mathematical concept for the original poster.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Mathematics news on Phys.org
Hello Sammy,

The Maclaurin expansion of $\cos z$ is: $$\cos z=\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{(2n)!}\qquad (\forall z\in\mathbb{C})$$ so, the Laurent series expansion for $\cos z/z$ centered at $z=0$ is $$\frac{\cos z}{z}=\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n-1}}{(2n)!}=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{(-1)^nx^{2n-1}}{(2n)!}\quad (0<|z|<+\infty)$$ If you have further questions, you can post them in the http://www.mathhelpboards.com/f50/ section.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top