- #1
das1
- 40
- 0
Looking at another textbook problem, hope someone can let me know if I'm on the right track:
Let $X_1, X_2, ... X_{25}$ be a random sample from some distribution and let $W = T(X_1, X_2, ... X_{25})$ be a statistic. Suppose the sampling distribution of W has a pdf given by $f(x) = \frac{2}{x^2}, 1 < x < 2$ . Find the probability that W < 1.5
So from what I understand, we're sampling 25 numbers from a population and then getting some statistic, like a mean or a median from those 25 numbers. If you sample enough times, you get $f(x) = \frac{2}{x^2}, 1 < x < 2$ as a sampling distribution for that statistic, between 1 and 2. I'm pretty sure you need to take a definite integral here with 1.5 as an upper limit, but what's the lower limit? 1? 0? $-\infty$ ? Also, do you integrate with respect to x or some other variable? Or maybe I'm way off. Hope someone can help, thanks!
Let $X_1, X_2, ... X_{25}$ be a random sample from some distribution and let $W = T(X_1, X_2, ... X_{25})$ be a statistic. Suppose the sampling distribution of W has a pdf given by $f(x) = \frac{2}{x^2}, 1 < x < 2$ . Find the probability that W < 1.5
So from what I understand, we're sampling 25 numbers from a population and then getting some statistic, like a mean or a median from those 25 numbers. If you sample enough times, you get $f(x) = \frac{2}{x^2}, 1 < x < 2$ as a sampling distribution for that statistic, between 1 and 2. I'm pretty sure you need to take a definite integral here with 1.5 as an upper limit, but what's the lower limit? 1? 0? $-\infty$ ? Also, do you integrate with respect to x or some other variable? Or maybe I'm way off. Hope someone can help, thanks!