- #1
Sudharaka
Gold Member
MHB
- 1,568
- 1
Title: Find a standard basis vector
Hi saqifriends, :)
We can use the determinants to see which standard basis vectors are linearly independent with the given two vectors.
\[\begin{vmatrix} 1 & 0 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]
\[\begin{vmatrix} 0 & 1 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]
\[\begin{vmatrix} 0 & 0 & 1\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}=0\]
Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are linearly independent sets.
Now we shall show that, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).
Take any, \((x,y,z)\in\Re^{3}\).
\[(x,y,z)=\alpha(1,0,0)+\beta(-1, 2, 3)+\gamma(1, -2, -2)\]
\[\Rightarrow \alpha=x+\frac{y}{2},\,\beta=z-y,\,\gamma=z-\frac{3\,y}{2}\]
\[\Rightarrow \alpha,\,\beta,\,\gamma\in\Re\]
Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).
Similarly it could be shown that, \(\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).
Hence both \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are bases of \(\Re^{3}\).
Kind Regards,
Sudharaka.
saqifriends said:Find a standard basis vector that can be added to the set {v1, v2} to produce a basis for R3 where;
v1 = (-1, 2, 3), v2 = (1, -2, -2)
Hi saqifriends, :)
We can use the determinants to see which standard basis vectors are linearly independent with the given two vectors.
\[\begin{vmatrix} 1 & 0 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]
\[\begin{vmatrix} 0 & 1 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]
\[\begin{vmatrix} 0 & 0 & 1\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}=0\]
Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are linearly independent sets.
Now we shall show that, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).
Take any, \((x,y,z)\in\Re^{3}\).
\[(x,y,z)=\alpha(1,0,0)+\beta(-1, 2, 3)+\gamma(1, -2, -2)\]
\[\Rightarrow \alpha=x+\frac{y}{2},\,\beta=z-y,\,\gamma=z-\frac{3\,y}{2}\]
\[\Rightarrow \alpha,\,\beta,\,\gamma\in\Re\]
Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).
Similarly it could be shown that, \(\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).
Hence both \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are bases of \(\Re^{3}\).
Kind Regards,
Sudharaka.