MHB Sarah Morash's question at Yahoo Answers about eigenvalues

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Eigenvalues
AI Thread Summary
The discussion centers on the process of orthogonally diagonalizing a specific matrix and finding its eigenvalues. The matrix in question is structured with variables a and b, and the user is struggling to factor it correctly to determine the eigenvalues. A response provides a detailed method for calculating the determinant of the matrix minus a scalar lambda, leading to the eigenvalues. The eigenvalues derived from the determinant are λ1 = a, λ2 = a + b, and λ3 = a - b. This solution addresses the user's challenge in finding the eigenvalues effectively.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

ey! So I have a question on an assignment asking to orthogonally diagonalize the matrix:
a 0 b
0 a 0
b 0 a
I know the steps on how to do this, but am having a hard time trying to figure out how to factor this correctly to get all of the eigenvalues at the beginning. I can factor it to a point, but then cannot seem to figure out how to solve for the eigenvalues.

If anyone could help, that would be great!

Here is a link to the question:

Help finding the eigenvalues of a matrix? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Sarah,

Denote by A to the given matrix. Let's find the corresponding eigenvalues.

\det (A-\lambda I)=\begin{vmatrix}{a-\lambda}&{0}&{b}\\{0}&{a-\lambda}&{0}\\{b}&{0}&{a-\lambda}\end{vmatrix}=(a-\lambda)\begin{vmatrix}{a-\lambda}&{b}\\{b}&{a-\lambda}\end{vmatrix}

Now we use the transformations: F_2\to F_2-F_1 and C_1\to C_1+C_2:

\begin{vmatrix}{a-\lambda}&amp;{b}\\{b}&amp;{a-\lambda}\end{vmatrix}=\begin{vmatrix}{a-\lambda}&amp;{b}\\{b-a+\lambda}&amp;{a-b-\lambda}\end{vmatrix}=\begin{vmatrix}{a+b-\lambda}&amp;{b}\\{0}&amp;{a-b-\lambda}\end{vmatrix}<br />

As a consequence:

\det (A-\lambda I)=(a-\lambda)(a+b-\lambda)(a-b-\lambda)

and the eigenvalues are

\lambda_1=a,\lambda_2=a+b,\lambda_3=a-b
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top