MHB Sava's question via email about matrix multiplication

AI Thread Summary
The discussion focuses on evaluating the products of the matrix A with its transpose, AAT and ATA. The calculation of AAT results in 25I, indicating that A is invertible. It is suggested that the inverse of A can be expressed as A⁻¹ = (1/25)A^T. The need to verify that ATA also equals 25I is mentioned, confirming the inverse relationship. The conclusion is that if both products yield 25I, the proposed inverse is valid.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Given the matrix $\displaystyle \begin{align*} A = \left[ \begin{matrix} 3 & 0 & -4 \\ 4 & 0 & \phantom{-}3 \\ 0 & 5 & \phantom{-}0 \end{matrix}\right] \end{align*}$ evaluate $\displaystyle \begin{align*} A\,A^T \end{align*}$ and $\displaystyle \begin{align*} A^T\,A \end{align*}$. Hence write down $\displaystyle \begin{align*} A^{-1} \end{align*}$.

$\displaystyle \begin{align*} A\,A^T &= \left[\begin{matrix} 3 & 0 & -4 \\ 4 & 0 & \phantom{-}3 \\ 0 & 5 & \phantom{-}0 \end{matrix}\right]\left[ \begin{matrix} \phantom{-}3 & 4 & 0 \\ \phantom{-}0 & 0 & 5 \\ -4 & 3 & 0 \end{matrix}\right] \\ &= \left[ \begin{matrix} 3\cdot 3 + 0 \cdot 0 + \left( -4 \right) \cdot \left( -4 \right) & 3 \cdot 4 + 0 \cdot 0 + \left( -4 \right) \cdot 3 & 3 \cdot 0 + 0 \cdot 5 + \left( -4 \right) \cdot 0 \\ 4 \cdot 3 + 0 \cdot 0 + 3 \cdot \left( -4 \right) & 4 \cdot 4 + 0 \cdot 0 + 3 \cdot 3 & 4\cdot 0 + 0 \cdot 5 + 3 \cdot 0 \\ 0 \cdot 3 + 5 \cdot 0 + 0 \cdot \left( -4 \right) & 0 \cdot 4 + 5 \cdot 0 + 0 \cdot 3 & 0 \cdot 0 + 5 \cdot 5 + 0 \cdot 0 \end{matrix} \right] \\ &= \left[ \begin{matrix} 25 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 25 \end{matrix} \right] \\ &= 25\,I \end{align*}$

Since post-multiplying $\displaystyle \begin{align*} A \end{align*}$ by $\displaystyle \begin{align*} A^T \end{align*}$ gave $\displaystyle \begin{align*} 25\,I \end{align*}$, it suggests that $\displaystyle \begin{align*} A^{-1} = \frac{1}{25}\,A^T \end{align*}$.

Of course, we must also check that $\displaystyle \begin{align*} A^T\,A = 25\,I \end{align*}$ as well. This can be left to the OP/Reader. IF this is the case, then $\displaystyle \begin{align*} A^{-1} = \frac{1}{25}\,A^T \end{align*}$.
 
Mathematics news on Phys.org
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top