MHB Sava's question via email about solving complex number equations

AI Thread Summary
The discussion focuses on solving the complex number equations z^3 + 1 = 0 and z^4 = 1 + i. For z^3 + 1 = 0, the solutions are derived using polar form, yielding three roots: z_1 = (1/2) + (√3/2)i, z_2 = -1, and z_3 = (1/2) - (√3/2)i. For z^4 = 1 + i, the magnitude is calculated as √2, leading to four roots expressed in polar form, with specific values determined for n = 0, 1, -1, and -2. Both equations are confirmed to be solved correctly, demonstrating the application of complex number theory.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle \begin{align*} z^3 + 1 = 0 \end{align*}$

$\displaystyle \begin{align*} z^3 + 1 &= 0 \\ z^3 &= -1 \\ z^3 &= \mathrm{e}^{ \left( 2\,n + 1 \right) \,\pi\,\mathrm{i} } \textrm{ where } n \in \mathbf{Z} \\ z &= \left[ \mathrm{e}^{\left( 2\,n + 1 \right) \, \pi \,\mathrm{i}} \right] ^{\frac{1}{3}} \\ &= \mathrm{e}^{ \frac{\left( 2\,n + 1 \right) \,\pi}{3} \,\mathrm{i} } \end{align*}$

For the three solutions with $\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) \in \left( -\pi , \pi \right] \end{align*}$, let $\displaystyle \begin{align*} n = 0 \end{align*}$ to find

$\displaystyle \begin{align*} z_1 &= \mathrm{e}^{ \frac{\pi}{3}\,\mathrm{i} } \\ &= \cos{ \left( \frac{\pi}{3} \right) } + \mathrm{i}\sin{ \left( \frac{\pi}{3} \right) } \\ &= \frac{1}{2} + \frac{\sqrt{3}}{2}\,\mathrm{i} \end{align*}$

Let $\displaystyle \begin{align*} n = 1 \end{align*}$ to find

$\displaystyle \begin{align*} z_2 &= \mathrm{e}^{ \frac{3\,\pi}{3}\,\mathrm{i} } \\ &= \mathrm{e}^{ \mathrm{\pi}\,\mathrm{i} } \\ &= \cos{ \left( \pi \right) } + \mathrm{i}\sin{ \left( \pi \right) } \\ &= -1 + 0\,\mathrm{i} \end{align*}$

If we let n be any larger, we would end up with an angle outside the acceptable range for the argument, so instead we will go the other way and let $\displaystyle \begin{align*} n = -1 \end{align*}$ to find

$\displaystyle \begin{align*} z_3 &= \mathrm{e}^{ -\frac{\pi}{3}\,\mathrm{i} } \\ &= \cos{ \left( -\frac{\pi}{3} \right) } + \mathrm{i}\sin{ \left( -\frac{\pi}{3} \right) } \\ &= \cos{ \left( \frac{\pi}{3} \right) } - \mathrm{i}\sin{\left( \frac{\pi}{3} \right) } \\ &= \frac{1}{2} - \frac{\sqrt{3}}{2}\,\mathrm{i} \end{align*}$
z^4 = 1 + \mathrm{i}

We should write this in polar form.

$\displaystyle \begin{align*} \left| z^4 \right| &= \sqrt{1^2 + 1^2} \\ &= \sqrt{1 + 1} \\ &= \sqrt{2} \end{align*}$

and as the number is in the first quadrant, that means

$\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) &= \arctan{ \left( \frac{1}{1} \right) } \\ &= \arctan{ \left( 1 \right) } \\ &= \frac{\pi}{4} \end{align*}$

so we have

$\displaystyle \begin{align*} z^4 &= \sqrt{2} \,\mathrm{e}^{ \left( \frac{\pi}{4} + 2\,\pi\,n \right) \,\mathrm{i}} \textrm{ where } n \in \mathbf{Z} \\ z &= \left\{ \sqrt{2}\,\mathrm{e}^{ \left[ \frac{\left( 1 + 8\,n \right) \, \pi}{4} \right] \,\mathrm{i} } \right\} ^{ \frac{1}{4} } \\ &= \sqrt[8]{2}\,\mathrm{e}^{ \left[ \frac{\left( 1 + 8\,n \right) \,\pi }{16} \right] \,\mathrm{i} } \end{align*}$

Now to get the four roots with $\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) \in \left( -\pi , \pi \right] \end{align*}$ we start by letting $\displaystyle \begin{align*} n = 0 \end{align*}$ to find

$\displaystyle \begin{align*} z_1 &= \sqrt[8]{2}\,\mathrm{e}^{ \frac{\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( \frac{\pi}{16} \right) } + \mathrm{i}\sin{ \left( \frac{\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( \frac{\pi}{16} \right) } + \sqrt[8]{2}\sin{ \left( \frac{ \pi}{16} \right) } \,\mathrm{i} \end{align*}$

Let $\displaystyle \begin{align*} n = 1 \end{align*}$ to find

$\displaystyle \begin{align*} z_2 &= \sqrt[8]{2}\,\mathrm{e}^{ \frac{9\,\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( \frac{9\,\pi}{16} \right) } + \mathrm{i}\sin{ \left( \frac{9\,\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( \frac{9\,\pi}{16} \right) } + \sqrt[8]{2}\sin{ \left( \frac{9\,\pi}{16} \right) } \,\mathrm{i} \end{align*}$

If we let n be anything greater, then we will end up with an argument outside our acceptable range, so instead let $\displaystyle \begin{align*} n = -1 \end{align*}$ to find

$\displaystyle \begin{align*} z_3 &= \sqrt[8]{2}\,\mathrm{e}^{ -\frac{7\,\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( -\frac{7\,\pi}{16} \right) } + \mathrm{i}\sin{ \left( -\frac{7\,\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( -\frac{7\,\pi}{16} \right) } + \sqrt[2]{8}\sin{ \left( -\frac{7\,\pi}{16} \right) } \, \mathrm{i} \end{align*}$

and let $\displaystyle \begin{align*} n = -2 \end{align*}$ to find

$\displaystyle \begin{align*} z_4 &= \sqrt[8]{2}\,\mathrm{e}^{ -\frac{15\,\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( -\frac{15\,\pi}{16} \right) } + \mathrm{i}\sin{ \left( -\frac{15\,\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( -\frac{15\,\pi}{16} \right) } + \sqrt[8]{2}\sin{ \left( -\frac{15\,\pi}{16} \right) } \,\mathrm{i} \end{align*}$
 
Mathematics news on Phys.org
Both equations are solved correctly.

The first is:

##\displaystyle \begin{align*} z^3 + 1 = 0 \end{align*}##

The second equation does not display properly for me, but it is:

##\displaystyle z^4 = 1 + \mathrm{i}##
 
  • Like
Likes Greg Bernhardt
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top