A Scalar decay to one-loop in Yukawa interaction

Gaussian97
Homework Helper
Messages
683
Reaction score
412
TL;DR Summary
One-loop correction for $\phi \to e^+e^-$ under a Yukawa interaction seems to vanish trivially.
I am trying to calculate the amplitude for a decay ##\phi \to e^+e^-## under a Yukawa interaction ##\mathcal{L}_I = -g\phi \bar{\psi}\psi## to one-loop order (with massless fermions for simplicity).

If I'm not wrong, there are 4 diagrams that contribute to 1 loop, three diagrams involving self-energy corrections (i.e. inserting a loop into the external lines) and an extra diagram with vertex correction (a ##\phi## field exchanged by ##e^+## and ##e^-##).

I have no problem calculating the integrals and using counterterms to cancel the infinities that arise, but I'm not sure if the conditions I use for renormalization are correct. Following the example of QED, to apply on-shell renormalization I used the following conditions;

The scalar propagator in the limit ##p^2 \to M^2## should be ##\frac{i}{p^2-M^2}##

The fermion propagator in the limit ##\not{\!p} \to 0## should be ##\frac{i}{\not{p}}##

The vertex function in the limit ##p^2 \to M^2## should be ##-ig##. (##p## is the momentum of the scalar particle.)

Now, because the self-energy diagrams are all in external legs, the first two corrections mean that those diagrams vanish.
But the third condition tells that the vertex correction must also vanish when the scalar particle is on-shell (as in my diagram). Therefore all the diagrams here vanish trivially due to renormalization conditions.

Is this analysis correct? Or did I make some mistake in the renormalization part?
 
Last edited:
Physics news on Phys.org
Gaussian97 said:
Yukawa interaction,,,with massless fermions
By doing so, didn't you just set the coupling to zero?
 
Vanadium 50 said:
By doing so, didn't you just set the coupling to zero?
Mmm... Not sure I follow you, maybe I'm saying something stupid. But how is the coupling constant ##g## in ##\mathcal{L}_I = -g\phi \bar{\psi}\psi## related to the mass of the fermions?
 
I'm sorry. I saw "Yukawa" and my brain immediately jumped to "Higgs Yukawa".
 
Oh, okay I understand now the confusion.
I'm doing this simply to practice (most textbooks deal with $\phi^4$ and QED), so I thought that Yukawa was a simple enough example to try to do it by myself.
There is no intention of this being applicable in the Standard Model or anything like that, just to have fun.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top