- #1
pastoreerrante
- 2
- 0
Homework Statement
Prove that for any three vectors ##\hat a, \hat b ## and ## \hat c##, ##\hat a \cdot (\hat b \times \hat c)## = ##(\hat a \times \hat b) \cdot \hat c ##
Homework Equations
[/B]
## \hat i \cdot \hat i = \hat j \cdot \hat j = \hat k \cdot \hat k = (1)(1)\cos(0) = 1 ##
## \hat i \cdot \hat j = \hat i \cdot \hat k = \hat j \cdot \hat k = (1)(1)\cos(90) = 0 ##
The Attempt at a Solution
I tried this procedure:
1. calculate the inner cross product ##(\hat b \times \hat c)## and ##(\hat a \times \hat b) ##
2. dotting the resulting vector with the third remaining vector (## \hat a ## and ## \hat c ## respectively)
3. I expected that the resulting vectors were identical in terms of their components, but they aren't.
These are the calculations for the LHS of my thesis:
1. ##(\hat b \times \hat c) ##= ##(b_y c_z - b_z c_y)\hat i## + ##(b_z c_x - b_x c_z)\hat j## + ##(b_x c_y - b_y c_x)\hat k##
2. dotting with ## \hat a ##:
## (a_x \hat i + a_y \hat j + a_z \hat k)## ## \cdot [(b_y c_z - b_z c_y)\hat i## + ##(b_z c_x - b_x c_z)\hat j## + ##(b_x c_y - b_y c_x)\hat k]## =
##(a_x b_y c_z - a_x b_z c_y)\hat i## + ##(a_y b_z c_x - a_y b_x c_z)\hat j## + ##(a_z b_x c_y - a_z b_y c_x)\hat k##
Now the calculations for the RHS of my thesis:
1. ##(\hat a \times \hat b) ##= ##(a_y b_z - a_z b_y)\hat i## + ##(a_z b_x - a_x b_z)\hat j## + ##(a_x b_y - a_y b_x)\hat k##
2. dotting with ## \hat c ##:
## (c_x \hat i + c_y \hat j + c_z \hat k)## ## \cdot [(a_y b_z - a_z b_y)\hat i## + ##(a_z b_x - a_x b_z)\hat j## + ##(a_x b_y - a_y b_x)\hat k]## =
##(a_y b_z c_x - a_z b_y c_x)\hat i## + ##(a_z b_x c_y - a_x b_z c_y)\hat j## + ##(a_x b_y c_z - a_y b_x c_z)\hat k##
Clearly,
##(a_x b_y c_z - a_x b_z c_y)\hat i## + ##(a_y b_z c_x - a_y b_x c_z)\hat j## + ##(a_z b_x c_y - a_z b_y c_x)\hat k##
is not equal to:
##(a_y b_z c_x - a_z b_y c_x)\hat i## + ##(a_z b_x c_y - a_x b_z c_y)\hat j## + ##(a_x b_y c_z - a_y b_x c_z)\hat k##
What am I missing here?
Thank you in advance